A method of determination of an acquisition program in order to maximize the total utility

Catalin Angelo IOAN¹

¹Danubius University of Galati, Department of Economics, catalin_angelo_ioan@univ-danubius.ro

Abstract. This paper solves in a different way the problem of maximization of the total utility. The author uses the diofantic equations (equations in integers numbers) and after a decomposing in different cases, he obtains the maximal utility.

Keywords: utility, maximization, diophantic

1 A method of maximization the total utility

Let a consumer which has a budget of acquision of two goods, in value of $S \in \mathbb{N}$ u.m. The prices of the two goods x and y are p_x and $p_y \in \mathbb{N}$ respectively. The marginal utilities corresponding to an arbitrary number of doses are in the following table:

e		
No. of dose	U _{mx}	U _{my}
1	u ₁₁	u ₁₂
•••		
i	u _{i1}	u _{i2}
•••		
n	u _{n1}	u _{n2}

We want in what follows to determine the number of doses x, respectivelz b of y such that the $\frac{a}{b}$

total utility: $U_t = \sum_{i=1}^{a} u_{i1} + \sum_{j=1}^{b} u_{j2}$ to be maximal.

Let therefore $S_1 \leq S$ and the equation:

(1) $ap_x+bp_y=S_1$.

Let denote with $d=(p_x,p_y)$ the greatest common divisor of p_x and p_y . We well know the fact that the equation has entire solutions it is necessary that $d | S_1$. Also, we shall consider: $S_1 > S - \min\{p_x, p_y\}$ because if $S_1 \le S - \min\{p_x, p_y\}$ with a supplementary unit of x or y, the total utility will grow.

Dividing (1) at d, we have:

(2)
$$a\frac{p_x}{d} + b\frac{p_y}{d} = \frac{S_1}{d}$$

and with the notation: $p'_x = \frac{p_x}{d}$, $p'_y = \frac{p_y}{d}$ follows:

(3)
$$ap'_{x}+bp'_{y}=\frac{S_{1}}{d}$$
.

It is well known that for any relative prime numbers $A,B \in \mathbb{N}$ it exist α and $\beta \in \mathbb{Z}$ (determined eventually with the Euclid algorithm) suc that: $\alpha A+\beta B=1$. Like $(p'_x,p'_y)=1$ follows that $\exists \alpha,\beta \in \mathbb{Z}$ such that:

(4)
$$\alpha p'_x + \beta p'_y = 1$$
, $\alpha p_x + \beta p_y = d$.
We have therefore:

(5)
$$ap'_{x}+bp'_{y}=\frac{S_{1}}{d}(\alpha p'_{x}+\beta p'_{y})$$

or, in other words:

$$\begin{array}{ll} (6) \ p'_x(a-\frac{S}{d},\alpha)=p'_x(\frac{S}{d},\beta+b), \\ \mbox{Because } (p',r_y)=1 \ follows \ from \ (6) \ that \ it \ exist \ k\in {\bf Z} \ such \ that: \\ (7) \ a, \frac{S}{d} \ \alpha=kp'_y; \ \frac{S}{d} \ \beta=kp'_x \ s \\ \hline d = kp'_y; \ \frac{S}{d} \ \beta=kp'_x \ \beta, \\ \ We \ can \ casily \ write \ (8) \ like: \\ (9) \ a = \frac{kp_y + S_x \ \alpha}{d} \ : b = \frac{-kp_y + S_x \ \beta}{d}. \\ \ We \ have, \ a,b\geq0, \ and \ from \ (1): \ a \leq \frac{S_y}{p_x}, \ b \leq \frac{S_y}{p_y}. \\ \ We \ have, \ a,b\geq0, \ and \ from \ (1): \ a \leq \frac{S_y}{p_x}, \ b \leq \frac{S_y}{p_y}. \\ \ From \ (9) \ we \ have: \\ \left\{ \begin{array}{c} k \geq \frac{-S_x \ \alpha}{p_y}, \ k \leq \frac{S_y(d-\alpha p_y)}{p_x \ p_y}, \ k \leq \frac{S_y(d-\alpha p_y)}{p_x \ p_y}, \ k \geq \frac{S_y(d-\alpha p_y)}{p_x \ p_y}, \ k \geq \frac{S_y(d-\alpha p_y)}{p_y \ p_y}, \ k \geq \frac{S_y(d-\alpha p_y)}{p_y \ p_y}, \ k \geq \frac{S_y(d-\alpha p_y)}{p_y \ p_y \$$

Because:
$$U_{t,k} = \sum_{i=1}^{a_k} u_{i1} + \sum_{j=1}^{b_k} u_{j2}$$
 și $U_{t,k+1} = \sum_{i=1}^{a_{k+1}} u_{i1} + \sum_{j=1}^{b_{k+1}} u_{j2} = \sum_{i=1}^{a_k} u_{i1} + \sum_{i=a_{k+1}}^{a_k + \frac{k_2}{d}} u_{i1} + \sum_{j=1}^{b_k} u_{j2} - \sum_{j=b_k - \frac{b_k}{d} + 1}^{b_k} u_{j2} = \sum_{i=1}^{a_k} u_{i1} + \sum_{j=1}^{a_k + \frac{k_2}{d}} u_{j2} - \sum_{j=b_k - \frac{b_k}{d} + 1}^{b_k} u_{j2} = \sum_{i=1}^{a_k} u_{i1} + \sum_{j=1}^{a_k + \frac{k_2}{d}} u_{j2} - \sum_{j=b_k - \frac{b_k}{d} + 1}^{b_k} u_{j2} = \sum_{i=1}^{a_k + \frac{k_2}{d}} u_{i1} + \sum_{j=1}^{a_k + \frac{k_2}{d}} u_{j2} - \sum_{j=b_k - \frac{b_k}{d} + \frac{k_2}{d}} u_{j2} = \sum_{i=1}^{a_k + \frac{k_2}{d}} u_{i1} + \sum_{j=1}^{a_k + \frac{k_2}{d}} u_{j2} - \sum_{j=b_k - \frac{k_2}{d} + \frac{k_2}{d}} u_{j2} = \sum_{i=1}^{a_k + \frac{k_2}{d}} u_{i1} + \sum_{j=1}^{a_k + \frac{k_2}{d}} u_{j2} - \sum_{j=b_k - \frac{k_2}{d} + \frac{k_2}{d}} u_{j2} = \sum_{i=1}^{a_k + \frac{k_2}{d}} u_{i1} + \sum_{j=1}^{a_k + \frac{k_2}{d}} u_{j2} - \sum_{j=b_k - \frac{k_2}{d} + \frac{k_2}{d}} u_{j2} = \sum_{i=1}^{a_k + \frac{k_2}{d}} u_{i1} + \sum_{j=1}^{a_k + \frac{k_2}{d}} u_{j2} - \sum_{j=k_k - \frac{k_2}{d}} u_{j2} = \sum_{i=1}^{a_k + \frac{k_2}{d}} u_{i1} + \sum_{j=1}^{a_k + \frac{k_2}{d}} u_{j2} + \sum_{j=1}^{a_k + \frac$

 $U_{t,k} + \sum_{i=a_k+1}^{a_k + \frac{p_k}{d}} u_{i1} - \sum_{j=b_k - \frac{p_k}{d} + 1}^{b_k} u_{j2} \text{ where } U_{t,k} \text{ is the total utility corresponding to } k.$

If exist k such that: $U_{t,k+1} < U_{t,k}$ then:

$$\sum_{i=a_{k}+1}^{a_{k}+\frac{P_{y}}{d}} u_{i1} - \sum_{j=b_{k}-\frac{p_{k}}{d}+1}^{b_{k}} u_{j2} <0 \text{ or other:}$$

$$\sum_{i=a_{k}+1}^{a_{k}+\frac{P_{y}}{d}} u_{i1} < \sum_{j=b_{k}-\frac{P_{x}}{d}+1}^{b_{k}} u_{j2} .$$

We have: $\sum_{i=a_{k+1}+1}^{a_{k+1}+\frac{p_y}{d}} < \sum_{i=a_k+1}^{a_k+\frac{p_y}{d}} u_{i1}$ because the both terms of sum have $\frac{p_y}{d}$ components, and the

marginal utilities are a descending range, a_k being ascending and analogously: $\sum_{j=b_{k+1}-\frac{p_k}{2}+1}^{b_{k+1}} u_{j2} > \sum_{j=b_k-\frac{p_k}{2}+1}^{b_k} u_{j2}$

because the both terms of sum have $\frac{p_x}{d}$ components, and the marginal utilities are a descending range, b_k being descending,

We have now:

$$U_{t,k+2} = U_{t,k+1} + \sum_{i=a_{k+1}+1}^{a_{k+1}+\frac{p_{y}}{d}} u_{i1} - \sum_{j=b_{k+1}-\frac{p_{x}}{d}+1}^{b_{k+1}} U_{j,2} < U_{t,k+1} + \sum_{i=a_{k}+1}^{a_{k}+\frac{p_{y}}{d}} u_{i1} - \sum_{j=b_{k}-\frac{p_{x}}{d}+1}^{b_{k}} u_{j,2} = U_{t,k} + 2\left(\sum_{i=a_{k}+1}^{a_{k}+\frac{p_{y}}{d}} u_{i1} - \sum_{j=b_{k}-\frac{p_{x}}{d}+1}^{b_{k}} u_{j,2} - U_{t,k}\right) < U_{t,k}.$$

Like a conclusion, the range of total utilities, once it reach a local maximum for a k, it reach in that point a global maximum.

2 Example

No. of dose	U _{mx}	U _{my}
1	10	20
2	8	16
3	7	15
4	6	14
5	5	13
6	4	10
7	3	8
8	2	7

p_x=4, p_y=6, S=33.

Solution

We have min{ p_x, p_y }=4, therefore S₁ \in (29,33]. Like (p_x, p_y)=2 follows that S₁ \in {30,32}. We have now: 4·(-1)+6·1=2 therefore α =-1 and β =1. From (12), we obtain: $k \in S_1 \left[\frac{1}{6}, \frac{1}{4}\right] \cap N$.

Like a conclusion:

•
$$S_1=30 \Longrightarrow k \in \left\lfloor \frac{30}{6}, \frac{30}{4} \right\rfloor \cap N=\{5, 6, 7\};$$

• $S_1=32 \Rightarrow k \in \left[\frac{32}{6}, \frac{32}{4}\right] \cap N=\{6,7,8\}.$

From the upper relations:

•
$$S_1=30 \Rightarrow a_k = \frac{6k-30}{2} = 3k-15, \ b_k = \frac{-4k+30}{2} = -2k+15, \ k \in \{5,6,7\};$$

•
$$S_1 = 32 \Longrightarrow a_k = \frac{6k - 52}{2} = 3k - 16, b_k = \lfloor = -2k + 16, k \in \{6, 7, 8\}$$

It follows: • $S_{1}=30$

$$s_1=50$$
 ⇒
 $s_1=50$ ⇒
 $s_5=5$ ⇒ $U_{t,5}=20+16+15+14+13=78$

- $k=6\Rightarrow a_6=3, b_6=3\Rightarrow U_{t,6}=10+8+7+20+16+15=76$
- $k=7 \Rightarrow a_7=6, b_7=1 \Rightarrow U_{t,7}=non computing!$

•
$$S_1=32 \Longrightarrow$$

- $\circ \quad k{=}6{\Rightarrow}a_{6}{=}2, b_{6}{=}4{\Rightarrow}U_{t,6}{=}10{+}8{+}20{+}16{+}15{+}14{=}83$
- \circ k=7 \Rightarrow a₇=5, b₇=2 \Rightarrow U_{t,7}=10+8+7+6+5+20+16=72
- $k=8 \Rightarrow a_8=8$, $b_8=0 \Rightarrow U_{t,8}=$ non computing!

Finally, the maximal utility will be $U_t=83$ for 2 goods x and 4 goods y.