A method of determination of an acquisition program in order to maximize the total utility

Catalin Angelo IOAN ${ }^{1}$
${ }^{1}$ Danubius University of Galati, Department of Economics, catalin_angelo_ioan@univ-danubius.ro

Abstract

This paper solves in a different way the problem of maximization of the total utility. The author uses the diofantic equations (equations in integers numbers) and after a decomposing in different cases, he obtains the maximal utility.

Keywords: utility, maximization, diophantic

1 A method of maximization the total utility

Let a consumer which has a budget of acquision of two goods, in value of $\mathrm{S} \in \mathbf{N}$ u.m. The prices of the two goods x and y are p_{x} and $p_{y} \in \mathbf{N}$ respectively. The marginal utlities corresponding to an arbitrary number of doses are in the following table:

No. of dose	U_{mx}	U_{my}
1	u_{11}	u_{12}
\ldots	\ldots	\ldots
i	$\mathrm{u}_{\mathrm{i} 1}$	$\mathrm{u}_{\mathrm{i} 2}$
\ldots	\ldots	\ldots
n	$\mathrm{u}_{\mathrm{n} 1}$	$\mathrm{u}_{\mathrm{n} 2}$

We want in what follows to determine the number of doses x, respectivelz b of y such that the total utility: $\mathrm{U}_{\mathrm{t}}=\sum_{\mathrm{i}=1}^{\mathrm{a}} \mathrm{u}_{\mathrm{i} 1}+\sum_{\mathrm{j}=1}^{\mathrm{b}} \mathrm{u}_{\mathrm{j} 2}$ to be maximal.

Let therefore $S_{1} \leq S$ and the equation:
(1) $a_{x}+b p_{y}=S_{1}$.

Let denote with $d=\left(p_{x}, p_{y}\right)$ the greatest common divisor of p_{x} and p_{y}. We well know the fact that the equation has entire solutions it is necessary that $d \mid S_{1}$. Also, we shall consider: $S_{1}>S-\min \left\{p_{x}, p_{y}\right\}$ because if $S_{1} \leq S-\min \left\{p_{x}, p_{y}\right\}$ with a supplementary unit of x or y, the total utility will grow.

Dividing (1) at d, we have:
(2) $a \frac{p_{x}}{d}+b \frac{p_{y}}{d}=\frac{S_{1}}{d}$
and with the notation: $p^{\prime}{ }_{x}=\frac{p_{x}}{d}, p^{\prime}{ }_{y}=\frac{p_{y}}{d}$ follows:
(3) $a p^{\prime}{ }_{x}+b p^{\prime}{ }_{y}=\frac{S_{1}}{d}$.

It is well known that for any relative prime numbers $A, B \in \mathbf{N}$ it exist α and $\beta \in \mathbf{Z}$ (determined eventually with the Euclid algorithm) suc that: $\alpha A+\beta B=1$. Like ($p^{\prime}{ }_{x}, p^{\prime}{ }_{y}$) $=1$ follows that $\exists \alpha, \beta \in \mathbf{Z}$ such that:
(4) $\alpha p^{\prime}{ }_{x}+\beta p^{\prime}{ }_{y}=1, \alpha p_{x}+\beta p_{y}=d$.

We have therefore:
(5) $\mathrm{ap}{ }^{\prime}{ }_{x}+b p^{\prime}{ }_{y}=\frac{S_{1}}{d}\left(\alpha p^{\prime}{ }_{x}+\beta p^{\prime}{ }_{y}\right)$
or, in other words:
(6) $p_{x}^{\prime}\left(a-\frac{S_{1}}{d} \alpha\right)=p^{\prime}{ }_{y}\left(\frac{S_{1}}{d} \beta-b\right)$.

Because ($\mathrm{p}^{\prime}{ }_{x}, \mathrm{p}^{\prime}{ }_{y}$) $=1$ follows from (6) that it exist $\mathrm{k} \in \mathbf{Z}$ such that:
(7) $a-\frac{S_{1}}{d} \alpha=k p_{y}^{\prime} ; \frac{S_{1}}{d} \beta-b=k p_{x}^{\prime}$
or:
(8) $a=k p^{\prime}{ }_{y}+\frac{S_{1}}{d} \alpha ; b=-k p^{\prime}{ }_{x}+\frac{S_{1}}{d} \beta$.

We can easily write (8) like:
(9) $a=\frac{k p_{y}+S_{1} \alpha}{d} ; b=\frac{-k p_{x}+S_{1} \beta}{d}$.

We have, $a, b \geq 0$, and from (1): $a \leq \frac{S_{1}}{p_{x}}, b \leq \frac{S_{1}}{p_{y}}$.
From (9) we have:
(10)

$$
\left\{\begin{array}{c}
k \geq-\frac{S_{1} \alpha}{p_{y}} \\
k \leq \frac{S_{1} \beta}{p_{x}} \\
k \leq \frac{S_{1}\left(d-\alpha p_{x}\right)}{p_{x_{2}} p_{y}} \\
k \geq \frac{S_{1}\left(\beta p_{y}-d\right)}{p_{x} p_{y}}
\end{array}\right.
$$

From (4) and (10) follows:
(11)

$$
\left\{\begin{array}{l}
k \geq-\frac{S_{1} \alpha}{p_{y}} \\
k \leq \frac{S_{\mathrm{y}} \beta}{\mathrm{p}_{\mathrm{x}}} \\
\mathrm{k} \leq \frac{\mathrm{S}_{\mathrm{f}} \beta}{\mathrm{p}_{\mathrm{x}}} \\
k \geq-\frac{\mathrm{S}_{1} \alpha}{\mathrm{p}_{\mathrm{y}}}
\end{array}\right.
$$

therefore:
(12) $k \in\left[-\frac{S_{1} \alpha}{p_{y}}, \frac{S_{\beta} \beta}{p_{x}}\right] \cap \mathbf{N}=S_{1}\left[-\frac{\alpha}{p_{y}}, \frac{\beta}{p_{x}}\right] \cap \mathbf{N}$.

The length of the interval: $\left[-\frac{S_{1} \alpha}{p_{y}}, \frac{S_{1} \beta}{p_{x}}\right]$ is $\frac{S_{1} \beta}{p_{x}}+\frac{S_{1} \alpha}{p_{y}}=\frac{S_{1}\left(\beta p_{y}+\alpha p_{x}\right)}{p_{x} p_{y}}=\frac{S_{1} d}{p_{x} p_{y}}$. Because $\mathrm{p}_{\mathrm{x}} \mathrm{p}_{\mathrm{y}}=\mathrm{d}\left[\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right]$ (the least common multiple of the two numbers) we obtain that the length of the interval is: $\frac{S_{1}}{\left[p_{x}, p_{y}\right]}$. Will be exist therefore $\left[\frac{S_{1}}{\left[p_{x}, p_{y}\right]}\right]+1$ entire values of k (where with $[z]$ we have noted the entire part of z) who verify the acceptability conditions.

Let therefore: $\mathrm{a}_{\mathrm{k}}=\frac{\mathrm{kp}_{y}+\mathrm{S}_{1} \alpha}{\mathrm{~d}}, \mathrm{~b}_{\mathrm{k}}=\frac{-\mathrm{kp}_{\mathrm{x}}+\mathrm{S}_{\mathrm{t}} \beta}{\mathrm{d}}$ with k upper determined.
We have: $a_{k+1}=\frac{(k+1) p_{y}+S_{1} \alpha}{d}=a_{k}+\frac{p_{y}}{d}$ and $b_{k+1}=\frac{-(k+1) p_{x}+S_{1} \beta}{d}=b_{k}-\frac{p_{x}}{d}$.

Because: $\quad U_{t, k}=\sum_{i=1}^{a_{k}} u_{i 1}+\sum_{j=1}^{b_{k}} u_{j 2} \quad s ̧ i \quad U_{t, k+1}=\sum_{i=1}^{a_{k+1}} u_{i 1}+\sum_{j=1}^{b_{k+1}} u_{j 2}=\sum_{i=1}^{a_{k}} u_{i 1}+\sum_{i=a_{k}+1}^{a_{k}+\frac{p_{y}}{d}} u_{i 1}+\sum_{j=1}^{b_{k}} u_{j 2}-\sum_{j=b_{k}-\frac{p_{x}}{d}+1}^{b_{k}} u_{j 2}=$
$U_{t, k}+\sum_{i=a_{k}+1}^{a_{k}+\frac{p_{y}}{d}} u_{i 1}-\sum_{j=b_{k}-\frac{p_{x}}{d}+1}^{b_{k}} u_{j 2}$ where $U_{t, k}$ is the total utility corresponding to k.
If exist k such that: $\mathrm{U}_{\mathrm{t}, \mathrm{k}+1}<\mathrm{U}_{\mathrm{t}, \mathrm{k}}$ then:
$\sum_{i=a_{k}+1}^{a_{k}+\frac{p_{y}}{d}} u_{i 1}-\sum_{j=b_{k}-\frac{p_{x}}{d}}^{b_{k}} u_{j 2}<0$ or other:
$\sum_{i=a_{k}+1}^{a_{k}+\frac{p_{y}}{d}} u_{i 1}<\sum_{j=b_{k}-\frac{p_{x}}{d}}^{b_{k}} u_{j 2}$.
We have: $\sum_{i=a_{k+1}+1}^{a_{k+1}+\frac{p_{y}}{d}} u_{i 1}<\sum_{i=a_{k}+1}^{a_{k}+\frac{p_{y}}{d}} u_{i 1}$ because the both terms of sum have $\frac{p_{y}}{d}$ components, and the marginal utilities are a descending range, a_{k} being ascending and analogously: $\sum_{j=b_{k+1}-\frac{p_{x}}{d}+1}^{b_{k+1}} u_{j=b_{k}}>\sum_{j-\frac{p_{x}}{d}+1}^{b_{k}} u_{j 2}$
because the both terms of sum have $\frac{\mathrm{p}_{\mathrm{x}}}{\mathrm{d}}$ components, and the marginal utilities are a descending range, b_{k} being descending,

We have now:
$U_{t, k+2}=U_{t, k+1}+\sum_{i=a_{k+1}+1}^{a_{k+1}+\frac{p_{y}}{d}} u_{i 1}-\sum_{j=b_{k+1}+\frac{p_{x}}{d}+1}^{b_{k+1}} u_{j 2}<U_{t, k+1}+\sum_{i=a_{k}+1}^{a_{k}+\frac{p_{y}}{d}} u_{i 1}-\sum_{j=b_{k}-\frac{p_{x}}{d}+1}^{b_{k}} u_{j 2}=U_{t, k}+2\left(\sum_{i=a_{k}+1}^{a_{k}+\frac{p_{y}}{d}} u_{i 1}-\sum_{j=b_{k}-\frac{p_{x}}{d}+1}^{b_{k}} u_{j 2}\right)<U_{t, k}$.
Like a conclusion, the range of total utilities, once it reach a local maximum for a k , it reach in that point a global maximum.

2 Example

No. of dose	U_{mx}	U_{my}
1	10	20
2	8	16
3	7	15
4	6	14
5	5	13
6	4	10
7	3	8
8	2	7

$p_{x}=4, p_{y}=6, S=33$.

Solution

We have $\min \left\{p_{x}, p_{y}\right\}=4$, therefore $S_{1} \in(29,33]$. Like $\left(p_{x}, p_{y}\right)=2$ follows that $S_{1} \in\{30,32\}$.
We have now: $4 \cdot(-1)+6 \cdot 1=2$ therefore $\alpha=-1$ and $\beta=1$. From (12), we obtain: $k \in S_{1}\left[\frac{1}{6}, \frac{1}{4}\right] \cap \mathbf{N}$.
Like a conclusion:

- $\mathrm{S}_{1}=30 \Rightarrow \mathrm{k} \in\left[\frac{30}{6}, \frac{30}{4}\right] \cap \mathbf{N}=\{5,6,7\}$;
- $\mathrm{S}_{1}=32 \Rightarrow \mathrm{k} \in\left[\frac{32}{6}, \frac{32}{4}\right] \cap \mathbf{N}=\{6,7,8\}$.

From the upper relations:

- $\quad \mathrm{S}_{1}=30 \Rightarrow \mathrm{a}_{\mathrm{k}}=\frac{6 \mathrm{k}-30}{2}=3 \mathrm{k}-15, \mathrm{~b}_{\mathrm{k}}=\frac{-4 \mathrm{k}+30}{2}=-2 \mathrm{k}+15, \mathrm{k} \in\{5,6,7\} ;$
- $\quad \mathrm{S}_{1}=32 \Rightarrow \mathrm{a}_{\mathrm{k}}=\frac{6 \mathrm{k}-32}{2}=3 \mathrm{k}-16, \mathrm{~b}_{\mathrm{k}}={ }^{\mathrm{L}}=-2 \mathrm{k}+16, \mathrm{k} \in\{6,7,8\}$.

It follows:

- $\mathrm{S}_{1}=30 \Rightarrow$
- $\mathrm{k}=5 \Rightarrow \mathrm{a}_{5}=0, \mathrm{~b}_{5}=5 \Rightarrow \mathrm{U}_{\mathrm{t}, 5}=20+16+15+14+13=78$
- $\mathrm{k}=6 \Rightarrow \mathrm{a}_{6}=3, \mathrm{~b}_{6}=3 \Rightarrow \mathrm{U}_{\mathrm{t}, 6}=10+8+7+20+16+15=76$
- $\mathrm{k}=7 \Rightarrow \mathrm{a}_{7}=6, \mathrm{~b}_{7}=1 \Rightarrow \mathrm{U}_{\mathrm{t}, 7}=$ non computing!
- $\mathrm{S}_{1}=32 \Rightarrow$
- $\mathrm{k}=6 \Rightarrow \mathrm{a}_{6}=2, \mathrm{~b}_{6}=4 \Rightarrow \mathrm{U}_{\mathrm{t}, 6}=10+8+20+16+15+14=83$
- $\mathrm{k}=7 \Rightarrow \mathrm{a}_{7}=5, \mathrm{~b}_{7}=2 \Rightarrow \mathrm{U}_{\mathrm{t}, 7}=10+8+7+6+5+20+16=72$
- $\mathrm{k}=8 \Rightarrow \mathrm{a}_{8}=8, \mathrm{~b}_{8}=0 \Rightarrow \mathrm{U}_{\mathrm{t}, 8}=$ non computing!

Finally, the maximal utility will be $\mathrm{U}_{\mathrm{t}}=83$ for 2 goods x and 4 goods y .

