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Abstract 
Fault Diagnosis in real systems usually involves human expert’s shallow knowledge (as pattern causes-

effects) but also deep knowledge (as structural / functional modularization and models on behavior).  The paper 
proposes a unified approach on diagnosis by abduction based on plausibility and relevance criteria multiple 
applied, in a connectionist implementation. Then, it focuses elicitation of deep knowledge on target conductive 
flow systems – most encountered in industry and not only, in the aim of fault diagnosis. Finally, the paper gives 
hints on design and building of diagnosis system by abduction, embedding deep and shallow knowledge 
(according to case) and performing hierarchical fault isolation, along with a case study on a hydraulic 
installation in a rolling mill plant.  

 
1 INTRODUCTION 
Real systems are so complex that someone’s efforts on detailed modeling fails. So, diagnosis 

(in technical, medical or economical domains) performed by human diagnosticians, often relies on 
incomplete, imprecise and uncertain knowledge. Human experts think in terms of discrete pieces: 
events, modules, causes and effects - all as separate knowledge pieces. Human concepts are also 
qualitative – regarding relations between causes and effects. Designers and practitioners cope with 
complexity of real systems by means of physical, functional and behavioral units.  

Diagnostic problem solving is abductive problem solving; human diagnostician’s way 
involves shallow knowledge – regarding associations between causes and effects from practice, and 
deep knowledge – regarding causal links from laws in the domain. 

The paper proposes a unified model for diagnosis by abduction with straight forward 
connectionist implementation, able to embed deep and shallow knowledge of human experts on the 
target system’s faulty behavior, again computational issues included. The study that follows integrates 
concepts from means-end and bond-graphs modeling, in the effort to embed deep and shallow 
knowledge in a diagnosis system based on abduction. 

 
2  UNIFIED MODEL FOR DIAGNOSIS BY ABDUCTION 
Abduction means finding causes as explanation of effects observed in the target system This 

chapter proposes a unified model for diagnosis by abduction, based on plausibility of causes from 
effects and relevance of causes. Plausibility embeds shallow and deep knowledge on cause-effects 
relations, relevance embeds deep knowledge on causes, related to physical and functional structures 
and to behavioral aspects of the target system.  

2.1 Characteristics of abductive problem solving 
Abductive reasoning in fault diagnosis considers the cause as single or multiple fault 

explaining effects appeared and observed by instance manifestations. Diagnosis in real systems faces a 
huge number of causes, due to various sources (equipment, environment human operator) and to 
various combinations of faults. On the other hand, the effects-to-faults links are complicated, while 
effects may enter, for example, conjunction or disjunction grouping when evoking faults, also 
interaction between causes when provoking some effects. [5] propose four categories of abduction 
problems:  

i)  independent abduction problems - no interaction exists between causes; 
ii)   monotonic abduction problems - an effect appears if cumulative causes appear; 
iii)   incompatibility abduction problems – pair of causes are mutually exclusive; 
iv)  cancellation abduction problems – pair of causes cancel some effect, otherwise explained 

separately. 
[4] have a sound approach on abductive problem solving based on neural networks adapted to 

abductions problems above. They introduced a fifth category: 
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v)  open abduction problems - when observations consist of three sets: present, absent and 
unknown observations. 

Human diagnostician usually master target systems structure and behavior complexity dealing 
with discrete pieces of knowledge: modules and components on physical structure, then process ends 
and component roles on functional structure. Regarding diagnosis, he or she employs other discrete 
pieces – faults and manifestations, which have truth values attached and refer to physical and 
functional units in a qualitative manner. 

Various links between effects and causes (as reversed causal relation) commonly get a 
connectionist computational model, suited to abduction. Diagnosis applications meant for real 
complex systems exploits the great number of effects-to-faults patterns, obtained from human 
diagnostician’s practice or from experiments, and embeds that shallow knowledge by training artificial 
neural networks. Deep knowledge – on causes and effects as in abduction problems above, may enter 
various dedicated processing (as in [4]). 

 
2.2  Abductive problems solving by plausibility and relevance 
Direct relations between effects and causes represent plausibility criteria [5]. From the set of 

all plausible causes only a subset represent actual causes, usually obtained through a parsimonious 
principle. [6] considers the minimum cardinality as a relevance criterion and applies it to the set of 
plausible faults to obtain the diagnostic subset.  

2.2.1  Cause isolation by relevance 
Plausibility criteria detects causes (e.g. faults), while relevance criteria isolate them. The paper 

extends the concept of relevance and makes it effective in Fault Detection and Isolation (FDI). 
Relevance assumes some grouping of causes followed by selection of most plausible item 

from the group (in [1] called relevance group). For example, all faults occurring at a physical 
component form a group, only one likely to be the cause of effects appeared. Following minimum 
cardinality principle over the structure, if one fault is relevant – single fault diagnosis, if certain 
number of faults – multiple fault diagnosis performed. 

The concept of relevance is useful when fault diagnosis relies on expert's deep knowledge, 
when he or she applies different grouping criteria to faults according to deep knowledge in the 
domain. Hence, relevance is effective not only regarding the minimum cardinality principle over the 
structure but also regarding some phenomena happening in the target system and domain. For 
example, while relevance criterion over structure states “a component is unlikely to have more than 
one fault at a time”, in conductive flow systems another relevance criterion  may apply “leakage is 
unlikely to be caused by more than one fault at a time”. Relevance involves first grouping causes, then 
selecting the most relevant by some processing – for example sorting causes by plausibility. 

2.2.2. Plausibility and relevance in a connectionist approach 
As a general idea, abductive problem solving proceeds by multiple applying the two functions: 
- plausibility(P_CRITERIA, EFFECTS) which output is the set of all plausible CAUSES, 

activated from instance EFFECTS according to plausibility criteria P_CRITERIA;  
- relevance(R_CRITERIA, CAUSES) which output is a subset of CAUSES from the set of 

the plausible ones, in groups and relevance criteria according to R_CRITERIA. 
Various P_CRITERIA and R_CRITERIA may apply sequentially to effects and causes until a 

final set of CAUSES have truth values of highest level achievable. If cardinality of the final set of 
CAUSES is 1 then one deals with single fault diagnosis, else with multiple fault diagnosis.  

In a computational model using Artificial Neural Networks (ANN) plausibility criteria get 
implemented in forward excitatory links from EFFECTS to CAUSES and relevance criteria get 
implemented in competing links between CAUSES. In ANN implementation of diagnosis, both effects 
and faults get logical truth values, while in the incomplete and imprecise environment they may get 
following meanings: effects “almost” appeared, and causes “possibly” occurred. Links between effects 
and causes enforce or reduce causes’ truth values, toward the diagnostic – i. e. the set of most 
plausible and relevant causes.  

However, ANN architecture must be adapted to comply with general types of abduction 
problems above, also to conjunction / disjunction grouping of effects to causes. In this respect, human 
diagnostician way of acting is again helpful, while plausibility and relevance get certain logical 
meanings from his or her point of view, as shown below. 
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2.2.3.  Characteristics of plausibility and relevance 
When activating causes form actual effects plausibility criteria should exhibit qualitative  and 

logical features, for example when activating causes even their effects are not certain (i.e. as long as 
effects truth value grows, the cause truth value grows), or when cause activation depends on 
conjunction of some effects. Relevance criteria should exhibit quantitative features, while causes have 
to be compared to select the relevant one. In the computational model for abductive problem solving:  

- plausible causes result from qualitative or logical processing that activate all causes from 
given set of effects; 

- relevant causes result from quantitative processing that selects causes from the plausible 
set if exhibit a given certainty degree (greater than the threshold value). 

While computational model deals with numbers, the two criteria should handle them 
adequately: numbers involved in plausibility criteria should suffer “logical overload” to allow 
conjunction / disjunction of effects to causes (and between causes) and numbers involved in relevance 
criteria assess the degree causes may belong to the diagnostic set. 

The “logical overload” of numbers is a meaning attached to a range of values, similar to fuzzy 
truth values attached to elements in fuzzy subsets. Cardinality of partition, over the universe of 
discourse of a numerical variable V, may take the values: 2 – if processing refers to classical logical 
approach (truth values 0 and 1), 3 or more – if processing refers to Lukasiewicz or to Zadeh logic, 
depending on horizontal (α-cuts) or vertical (continuous) representation of the fuzzy subsets.  

An example of logical overload of numbers is the following: if the input of a fault-neuron 
from a manifestation-neuron is greater than 0.5 (doubt threshold) then the link is declared as 
“important” and enters the fault neuron (added to the other inputs), else it is “not important” hence 
blocked (set to 0). Other examples below. 

 
2.3.  Connectionist model of abduction by plausibility and relevance 
In the presented approach, the ANN architecture for abductive problem solving is not a 

particular one; the only restrictions that apply are: the two layers EFFECTS and CAUSES are 
neighbour causes (because of possible conjunctions of effects to a fault – see §2.3.1). Plausibility 
criteria are forward links between EFFECTS and CAUSES, relevance criteria form various grouping of 
CAUSES then provoke competitions inside the relevance group. ANN architecture as Adaline, 
Perceptron or Counterpropagation, etc. are suited to implement the presented approach on abduction. 

2.3.1  Neural models of plausibility  
Let consider a cause Ci as a neuron that observes general equation for neuron activation by 

forward excitatory link from the layer of effects Ej (see Figure 1. a): 
 Ci = f(Σ wji ⋅ Ej + θi) (1) 
If both cause and effects get truth values, i.e. Ci∈[0,1] and effects Ej∈[0,1], then a link with 

weight w enforces the cause truth value at some effects. Cause neuron truth value Ci indicates how 
plausible is that cause in the context of actual effects values Ej. However, the above equation should 
also comply to plausibility criteria where effects enter a conjunction first, then attack the neuron’s 
input.  

In the presented approach, an input of cause-neuron get “logical overload” to allow logical 
processing (e.g. conjunction) required by plausibility criteria. After the training phase the weights w 
get certain values and the an actual input at cause neuron Ci in recall phase will be  I ij = wij ⋅ Ej. If the 
effect is not certain (Ej<0.5) then input is I ij ≤ wij /2, hence: 

if  I ij > wij /2 then Iij = “important”  else Iij = “not important” (2) 
It is now possible to perform logical aggregation on effects and causes. Neural model of 

plausibility is the site that performs the aggregation of input effects as follows (see Figure 1): 
- disjunctive aggregation – performed by default through cumulative processing of effects E 

at case-neuron input I:  
 Ii =Σ wij ⋅ Ej. (3) 
- conjunctive aggregation – performed by the “conjunction site”, see Figure 1. a, and the truth 

table; output O of the site observes the rule:  
 if  I1 > w1 /2 AND I2 > w2 /2 then O = I1 + I2  else O = 0  (4) 
- negation – performed by the “negation site”, see Figure 1. b, and the truth table; output O of 

the site observes the rule:   
 O = w1 - I1   (5) 
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The original architecture of ANN is changed by the sites added to cause-neurons that require 
logical aggregation. 

 
Figure 1.     Neural sites for logical aggregation of effects to causes. 

 
Note that added sites do not disturb or change the original running of the  initial ANN, while 

they do not change either the training procedure nor values w of weights. For example, if two effects 
enter a conjunction aggregation, the input pattern for training such situation presents the two inputs 
with truth values greater than doubt value (0.5), while that pattern comply the real situation (both input 
effects are important); at recall phase it worth to activate the fault only if both actual effects are 
important. 

2.3.2  Neural models for abduction problems  

 
Figure 2.   Abduction problem solving using neural  

network models for plausibility criteria 
 
Neural (sites) models for the five abduction problems in the literature are depicted in Figure 2. 

and solve each category from §2.1 as follows:  
a) For independent abduction problems – excitatory links apply directly from effect Ej to 

corresponding cause Ci (see Figure 2. a. If there exist also conjunction grouping of effects to the cause, 
conjunction site(s) get “mounted” and entering the default disjunctive grouping to neuron input.  

b) For monotonic abduction problems – causes Ci and Cl evoking both the same effect Ej, 
suffer conjunction with one-another and with the common effect through conjunction sites as in Figure 
2. b: 
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 (Ci ←  Cl  AND Ej ) AND (Cl ←  Ci  AND Ej ) (6) 
c) For incompatibility abduction problems – the pair Ci and Cl of causes are mutually 

exclusive, i.e. one is active if the other one is not, both evoking the same effect Ej. The pair of causes 
suffer conjunction with negation of the another one conjunction with the common effect as in Figure 
2. d: 

(Ci ← NOT Cl  AND Ej )  AND (Cl ← NOT Ci  AND Ej )  (7) 
d) For cancellation abduction problems – the pair Ci and Cl of causes are mutually exclusive, 

i.e. one is active if the other one is not, both evoking the same effect Ej. The pair of causes suffer 
conjunction with negation of the another one conjunction with the common effect as in Figure 2. e: 

(Ci ← NOT Cl  AND Ej ) AND (Cl ← NOT Ci  AND Ej )  (8) 
e) For open abduction problems – the only problem is dealing with absent effects: cause Ci is 

activated if no effect Ej  exists, see Figure 2. c: 
 Ci ← NOT Ej  (9) 
Original ANN architecture for abductive problem solving is changed adding sites specific to 

each abduction problem, adequate to causes and effects in concern. However, similar to final note at 
§2.3.1, the ANN running is not changed – regarding the training procedure and values of weights 
obtained. 

2.3.3 Neural models of relevance 
A relevance criterion usually observes minimal cardinality of CAUSES over criterion’s 

specific relevance group. In general, relevance involves three stage processing: 
i) Consider all plausible causes belonging to relevance group.  
ii)  Start competition between causes inside relevance group.  
iii)  Select cause(s) for diagnostic set, observing an ordinal property of causes and some 

selection threshold. 
Neural model of relevance is competition between causes. Computationally, it may consist 

from sorting all causes in the relevance group, then selecting the one(s) with higher degree according 
to a maximum number (e.g. 1 if single fault diagnosis), or a “relevance value” (e.g. minimum 
activation of causes – if they exceed the doubt value 0.5). For example, if the ordinal property for 
sorting is plausibility of causes (truth values of CAUSES), then the sorting procedure is applied to all 
causes in the relevance group - not only to plausible ones, while those not plausible have the lowest 
degree. So, competition proceed always over the entire set of CAUSES in the relevance group. 

 
3  DEEP AND SHALLOW KNOWLEDGE IN DIAGNOSIS 
Knowledge elicitation is a very important phase in diagnosis system design, while it involves 

information on various causes and effects, on physical structure and on normal and faulty behavior of 
the target system in real life. Any approach on diagnosis depends on how knowledge covers spaces of 
causes, effects and their relations; otherwise, one gets open spaces and incomplete knowledge leads to 
inaccurate diagnosis. When the target system is a conductive flow system (CFS) diagnosis is more 
difficult due to propagated effects throughout the system. 

Few works refer to methodical procedures to guide knowledge elicitation, and fewer to 
generic models suited to control and guide knowledge covering for diagnosis purposes. [3] proposes 
knowledge pieces suited to cover faulty behavior of CFSs based on means-end modeling approach and 
bond graphs, and [2] presents a CAKE (Computer Aided Knowledge Elicitation) tool for methodical 
covering of structural and behavioral complexity of a target CFS. 

Present chapter stresses main directions to extract deep knowledge on structure and behavior 
of conductive flow systems which perform simultaneously multiple functions – further denominated 
Multifunctional Conductive Flow Systems (MCFSs), and the ways such knowledge is represented and 
become plausibility and relevance criteria for diagnosis by abduction. 

3.1  Abstraction levels for structure and behavior 
It is commonly accepted that discrete pieces in physical and functional structure of a real 

target system is only an abstraction that requires also models for continuous behavior; the entire model 
obtained is a hybrid dynamic model (as discussed in [7]). In this view, deep knowledge on the target 
MCFS refers to: 

- physical and functional units, from means-end modeling perspective – as  Discrete Event 
System abstraction; 
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- bond graph components and junctions, from bond graph modeling perspective – as 
Continuous System abstraction required to assess abnormal behavior of structural units. 

For CFSs bond graphs represent powerful modeling means, as they not only capture essential 
ideas from Kirchkoff'’s laws but, additionally, offer a proper modularization of the target system’s 
model, in a general conceptualization.  

3.1.1  Physical and functional structure  
From means-end point of view the module is a network of components, and the entire target 

MCFS is a network of modules. Modules accomplish specific ends during specific activities through 
components flow functions as in [8]. Each module may accomplish more ends, provided one end 
attained during one activity; each components may have more functions but only one during one 
activity of the superset module. 

From bond graph point of view, modules correspond to bond graph junctions. [3] proposes 
three generic flow functions that correspond to bond graph primitive components, so reducing them to 
a meaningful subset for diagnosis purposes: 

- flow transport function (ftf) – R component; when faulty, directly affects propagation of power 
flow along paths in the target CFS;  

- flow storing function (fsf) – C and I components; when faulty, directly affect time delays in the 
running process; 

- flow processing function (fpf) – TR and GY components; when faulty, directly affect the ends 
of modules. 

3.1.2 Faulty behavior structure  
Fault is a physical non-conformity occurred at component level, opposed to designed 

specifications from producer. Fault’s name often suggests a disorder or a physical damage so, it 
reflects knowledge incompleteness about component structure. The set of all “known” faults should be 
decided at elicitation phase; some of them indicate a specific damage, some – a class of damages.  

Manifestation is a piece of knowledge assessing values of an observed variable at component, 
during a certain activity of the superset module. Manifestation is a linguistic variable  with truth values 
for normal (no) or “too low” (lo), “too high” (hi) linguistic values. Some manifestations arrive by 
sensors (from continuous or binary variables), some by human operators tests (from human senses – as 
adjectives, or from test points – as numbers) on observed variables in the process. Manifestations may 
refer to primary effects or to secondary effects.  

Anomaly or symptom is a piece of knowledge obtained from a set of manifestation by some 
processing, and deposits deep knowledge in the domain, so helpful in diagnosis (see below). 

3.1.3  Generic anomalies in the faulty behavior 
To each generic flow function a generic anomaly is attached : 
i) Process anomaly (AnoP) – means deviation from the normal value (e.g. “too high” or “too 

low”) of an end-variable; it refers to transformations the flow undergoes. 
ii)  Transport anomaly (AnoT) - means changes on flow variables or on inner structure of 

component, relative to flow transport along flow paths. 
iii)  Store anomaly (AnoS) – refers to deviation from the normal value for the delay specific to 

storing (capacitor-like) or inertial (inductance-like) component (see §2.3.). 
Note that only transport anomalies refer to propagated effects, while process and store 

anomalies are located at component showing corresponding flow function fpf or fsf as above. If there 
exists a definite set of transport anomalies located at faulty component, then they get meanings of 
primary effects.  

 [3] presents signatures with manifestations at effort and flow (bond graph) variables in 1-
junction and 0-junction, specific to transport anomaly occurred in the junction. 

 
3.1.4 Orthogonal transport anomalies  
Works on fault diagnosis deal with concepts as “leakage” or “obstruction”. [3] defines a set of 

four orthogonal transport-anomalies for bond graph components, as follows: 
a) Obstruction – change of resistance parameter (increase), without flow path modification, 

e.g. clogged pipe. 
b) Tunneling – change of resistance parameter (decrease), without flow path modification, 

e.g. broken-through pipe. 
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c) Leakage – structure change (balance too low on flow), involving flow path modification, 
e.g. hole in pipe. 

d) Infiltration – structure change (balance too high on flow), involving flow path 
modification, e.g. flow injection. 

Transport anomalies are orthogonal in pairs (obstruction to tunneling and leakage to 
infiltration), each pair orthogonal to the other. A fault causes a unique transport anomaly that appears 
at respective component and, by default, at module it belongs. Thus, transport anomaly is a primary 
effect located at module level, hence isolating it means isolating the faulty module.  

Each type of transport anomaly has a specific signature – regarding deviations for bond graph 
junctions. 

3.2  Guidelines on knowledge embedding in plausibility and relevance criteria 
The main problem raised on diagnosis by abduction in the proposed approach is deep and 

shallow knowledge elicitation and embedding in the neural network for diagnosis. 
During elicitation phase, knowledge engineer discriminates: 
- physical structure – i.e. modules and components; 
- functional structure – i.e. activities for modules and flow functions for components, bond 

graph junctions for interconnected modules and bond graph components with specific 
parameters for corresponding flow functions; 

- behavioral structure – i.e. faults, manifestations and flow anomalies (processing, store, 
transport). 

Note that components result from hierarchical decomposition of physical structure according 
to the accepted granularity of fault isolation, that is location units for faults may also have structure.  

Plausibility criteria embed shallow knowledge as patterns of non-propagated manifestations-
to-faults (e.g. color, position) and anomalies-to-faults. Deep knowledge refer to conjunction and 
abduction problems related to manifestations and certain faults. 

Relevance criteria involve modularization of faults according to deep knowledge on physical 
and functional structure and on anomalies they provoke (in the given structural unit). 

It worth stressing that shallow knowledge for plausibility is obtained for each module 
separately. So, practical survey rather experiments on real complex systems seem realistic (in 
technical and economical domains), while they are much easier performed and less combinatorial 
burden occur than for the entire system. 

3.3. Abduction procedure for diagnosis  
All discrete concepts resulted from elicitation phase should enter in ANN structure for 

diagnosis by abduction. So, all units from behavioral structure become neurons: manifestations on 
input layer, faults on output layer and anomalies on an intermediate level (activated by manifestations 
and attacking faults). All behavioral units attached to a module belong to a separate neural network 
(ANN). Links between neurons get weights by training procedure (from shallow knowledge) and sites 
from deep knowledge, all according to plausibility criteria stated by human diagnostician at elicitation 
phase. 

All units from physical and functional structures become relevance groups related to relevance 
criteria at elicitation phase. 

For proper diagnosis, each component (as final location in fault isolation) have attached the 
“normal” CAUSE, beside all faults at component in concern. So, to the set F0, F1,… Fn-1 of neurons 
indicating faults, it is added the Fn neuron – assessing the truth value of normal running. It is important 
to exist a Fn neuron because NORMAL situation enters relevance competition with FAULTY situation. 
So, before finding the cause when faulty situation occurred, diagnosis system should asses if the target 
system is FAULTY (i.e. it performs fault detection). 

To asses FAULTY situation a relevance criterion is applied over all decisions F0 to Fn-1 and  Fn 
as follows: 

if          1)-n .. 1 (i  5.0    
1

0
n

n

i
ii FnFF ⋅>∧=>∃ ∑

−

=
  then FAULTY  (10) 

in words: if any of activated faults have truth values greater than the "doubt value" and the 
relative level of the NORMAL situation is greater than all current (activated) faults, then the FAULTY 
situation is credited. 

Diagnosis is performed in hierarchic and sequential manner, detecting transport anomaly at 
module, then isolating fault(s) by abduction through multiple plausibility and relevance criteria: 
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1) faulty module isolation – by plausibility and relevance of transport anomalies possibly 
occurred based on signatures in junctions of the system’s bond graph model (see [2]); 

2..n-1) fault isolation – proceed by sequential application of a given sets of plausibility and 
relevance criteria, specific to module detected in stage 1; 

n) diagnostic – fault(s) obtained after assessing faulty situation versus normal situation at 
module, by relevance as in (10). 

Because modules of target MCFS simultaneously accomplish ends (independent from one 
another), combinations of activities raise to a huge number. In the hierarchic way proposed, diagnosis 
relies only on shallow knowledge and deep knowledge at module level, then on groups of modules in 
bond graph junctions. 

 
4  CASE STUDY ON A HYDRAULIC INSTALLATION 
Fault diagnosis was meant for a simple hydraulic installation in a rolling mill plant (see Figure 

3), comprising three modules: Supply Unit (pump, tank and pressure valve), Hydraulic Brake (control 
valve, brake cylinder) and Conveyor (control valve, self, the conveyor cylinder). For the 20 faults to 8 
components considered, manifestations come from sensors as lo, no, hi values (2 flow-rate, 4 pressure, 
5 temperature), 8 binary values (cylinders at left/right ends and open/shut valves) also 10 linguistic 
manifestations from operator observed variables (for noise and oil-mud). Software architecture exhibit 
6 ANN perceptron  blocks – 2 per module.  

The three modules – corresponding to Hydraulic Brake, Carrier and Oil Supply, are all bond 
graph 1-jonctions (if considering components on the loop for each) and they enter a 0-junction, 
corresponding to the entire hydraulic MCFS. Modules evolve (somehow) independently those with 
hydraulic cylinders in 4 activities and the third with 2 activities. 

 

 
 

Figure 3.    Hydraulic installation under fault diagnosis. 
 
Figure 4 presents the diagnostic for 20 simulated faults in the example hydraulic installation 

and the maximum number of successive activities in which the diagnosis system is able to properly 
indicate the fault; additional observations supplied by human operator count as distinct activities.  

 
Figure 4.    20 faults and the number of 

activities in which they are properly recognized. 
Diagnosis performed on the target 

hydraulic system applied plausibility criteria 
from human diagnostician concerning patterns 
of manifestations-to-faults from practice and 
deep knowledge on specific transport anomalies 
for the faults in concern. Deep knowledge for 
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relevance criteria refer to physical structure and to transport anomalies shared by faults. 
 
5  CONCLUSION 
Diagnosis is a difficult task in real life, while it is often performed on open spaces of causes 

and effects, in an incomplete and imprecise knowledge milieu. Human diagnostician performs 
diagnosis by abduction; abductive reasoning itself is a challenge for philosophy, science and practice.  

The paper proposes a unified model for diagnosis by abduction, based on plausibility and 
relevance criteria on causes. It allows connectionist implementation through various artificial neural 
network types – if adequate to implement plausibility by excitatory links between effects and causes, 
and relevance by competition in special groups of causes; all effects and causes become neurons with 
graded levels of truth – regarding evidence of effects and certainty of cause, respectively.  

The unified model for diagnosis by abduction is simpler than the one proposed by [4], and 
offers also natural meanings for human diagnosticians interested on practical implementation in 
technical or economical domains.  

The unified for abductive problem solving model is fully functional for all categories of 
abduction problems, also for disjunctive and conjunctive grouping of effects to a cause. It is meant to 
embed shallow and deep knowledge from human diagnostician in the way he or she actually does in 
practice and the connectionist model  

The paper presents also hints on knowledge elicitation of deep and shallow knowledge on the 
class of multifunctional conductive flow systems (MCFSs), i.e. systems that perform simultaneously 
multiple functions, based on (multiple) flow conduction. Such systems are often met in industry but 
also in other domains of real life. So, along with the diagnosis model by abduction the paper offers 
design guidelines for computational model of an automated diagnosis system. Application in 
simulated environment shows good performance, of diagnostic, however strongly dependent on 
available knowledge. 
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