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Abstract

Fault Diagnosis in real systems usually involvemban expert’s shallow knowledge (as pattern causes-
effects) but also deep knowledge (as structunahétional modularization and models on behavicFhe paper
proposes a unified approach on diagnosis by abdochiased on plausibility and relevance criteria tiplé
applied, in a connectionist implementation. Thérfpéuses elicitation of deep knowledge on targetdactive
flow systems — most encountered in industry andnlyt in the aim of fault diagnosis. Finally, thaper gives
hints on design and building of diagnosis systemabyguction, embedding deep and shallow knowledge
(according to case) and performing hierarchical lfaisolation, along with a case study on a hydrauli
installation in a rolling mill plant.

1 INTRODUCTION

Real systems are so complex that someone’s effartdetailed modeling fails. So, diagnosis
(in technical, medical or economical domains) paned by human diagnosticians, often relies on
incomplete, imprecise and uncertain knowledge. Humeperts think in terms dadiscrete pieces:
events, modules, causes and effects - all as depamawledge pieces. Human concepts are also
qualitative — regarding relations between causes and effBasigners and practitioners cope with
complexity of real systems by means of physicaicfional and behavioral units.

Diagnostic problem solving is abductive problemvsw; human diagnostician’'s way
involves shallow knowledge — regarding associatioetsveen causes and effects from practice, and
deep knowledge — regarding causal links from lawké domain.

The paper proposes a unified model for diagnosisabgluction with straight forward
connectionist implementation, able to embed deepshallow knowledge of human experts on the
target system’s faulty behavior, again computatissues included. The study that follows integsate
concepts from means-end and bond-graphs modelindha effort to embed deep and shallow
knowledge in a diagnosis system based on abduction.

2 UNIFIED MODEL FOR DIAGNOSISBY ABDUCTION

Abduction means finding causes as explanation fettf observed in the target system This
chapter proposes a unified model for diagnosis tuetion, based oplausibility of causes from
effects andrelevanceof causes. Plausibility embeds shallow and deewladge on cause-effects
relations, relevance embeds deep knowledge on saredated to physical and functional structures
and to behavioral aspects of the target system.

2.1 Characteristics of abductive problem solving

Abductive reasoning in fault diagnosis considers tiause as single or multiple fault
explainingeffectsappeared and observed by instance manifestafddagnosis in real systems faces a
huge number of causes, due to various sourcespfegqui, environment human operator) and to
various combinations of faults. On the other hahd, effects-to-faults links are complicated, while
effects may enter, for example, conjunction or ufisfion grouping when evoking faults, also
interaction between causes when provoking sometsff¢s] propose four categories of abduction
problems:

i) independenabduction problems - no interaction exists betwesarses;

i)  monotonicabduction problems - an effect appears if cumgatauses appear;

iii) incompatibilityabduction problems — pair of causes are mutualtjusive;

Iv) cancellationabduction problems — pair of causes cancel sofeetebtherwise explained

separately.

[4] have a sound approach on abductive problenirgplvased on neural networks adapted to

abductions problems above. They introduced a ¢dtiegory:
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v) open abduction problems - when observations cooéithree sets: present, absent and

unknown observations.

Human diagnostician usually master target systerastare and behavior complexity dealing
with discrete pieces of knowledge: modules and @mapts on physical structure, then process ends
and component roles on functional structure. Reggrdiagnosis, he or she employs other discrete
pieces — faults and manifestations, which havehtndlues attached and refer to physical and
functional units in a qualitative manner.

Various links between effects and causes (as redecswusal relation) commonly get a
connectionist computational model, suited to akidact Diagnosis applications meant for real
complex systems exploits the great number of effamfaults patterns, obtained from human
diagnostician’s practice or from experiments, amibeds that shallow knowledge by training artificial
neural networks. Deep knowledge — on causes ardtgfls in abduction problems above, may enter
various dedicated processing (as in [4]).

2.2 Abductive problems solving by plausibility and relevance

Direct relations between effects and causes represausibility criteria [5]. From the set of
all plausible causes only a subset represent actuaes, usually obtained through a parsimonious
principle. [6] considers the minimum cardinality aselevance criterionand applies it to the set of
plausible faults to obtain the diagnostic subset.

2.2.1 Cause isolation by relevance

Plausibility criteria detects causes (e.g. fauitdile relevance criteria isolate them. The paper
extends the concept of relevance and makes itteféein Fault Detection and Isolation (FDI).

Relevance assumes some grouping of causes folltwesklection of most plausible item
from the group (in [1] calledelevance group For example, all faults occurring at a physical
component form a group, only one likely to be tlaeise of effects appeared. Following minimum
cardinality principle over the structure, if onaulfais relevant — single fault diagnosis, if centai
number of faults — multiple fault diagnosis perfean

The concept of relevance is useful when fault disgnrelies on expert's deep knowledge,
when he or she applies different grouping critedafaults according to deep knowledge in the
domain. Hence, relevance is effective not only réigg the minimum cardinality principle over the
structure but also regarding some phenomena happeni the target system and domain. For
example, while relevance criterion over structustes “a component is unlikely to have more than
one fault at a time”, in conductive flow system®ter relevance criterion may apply “leakage is
unlikely to be caused by more than one fault @&nat Relevance involves first grouping causesnthe
selecting the most relevant by some processing exfample sorting causes by plausibility.

2.2.2. Plausibility and relevance in a connectidmigproach

As a general idea, abductive problem solving prdséxy multiple applying the two functions:

- plausibility(P_CRITERIA, EFFECT)Swhich output is the set of all plausibl@BAUSES

activated from instandeFFECTSaccording to plausibility criterie_ CRITERIA

- relevancéR_CRITERIACAUSES$ which output is a subset GFAUSESfrom the set of

the plausible ones, in groups and relevance aitacording t&R_CRITERIA

VariousP_CRITERIAandR_CRITERIAmMay apply sequentially to effects and causes antil
final set of CAUSEShave truth values of highest level achievablecdfdinality of the final set of
CAUSESSs 1 then one deals with single fault diagnodie sith multiple fault diagnosis.

In a computational model using Artificial Neural td®erks (ANN) plausibility criteria get
implemented in forward excitatory links froBFFECTSto CAUSESand relevance criteria get
implemented in competing links betwe€@AUSESIn ANN implementation of diagnosis, both effects
and faults get logical truth values, while in timeamplete and imprecise environment they may get
following meanings: effects “almost” appeared, aadses “possibly” occurred. Links between effects
and causes enforce or reduce causes’ truth valoesrd the diagnostic — i. e. the set of most
plausible and relevant causes.

However, ANN architecture must be adapted to compith general types of abduction
problems above, also to conjunction / disjunctioouging of effects to causes. In this respect, huma
diagnostician way of acting is again helpful, whptusibility and relevance get certain logical
meanings from his or her point of view, as showiolwe

350



2.2.3. Characteristics of plausibility and relexan

When activating causes form actual effects plalitsitdriteria should exhibigualitative and
logical features, for example when activating causes #vein effects are not certain (i.e. as long as
effects truth value grows, the cause truth valuewg), or when cause activation depends on
conjunction of some effects. Relevance criteriauthexhibitquantitativefeatures, while causes have
to be compared to select the relevant one. Inadhgpatational model for abductive problem solving:

- plausible causes result from qualitative or logjmacessing that activate all causes from

given set of effects;

- relevant causes result from guantitative procestiag selects causes from the plausible

set if exhibit a given certainty degree (greatentthe threshold value).

While computational model deals with numbers, ti tcriteria should handle them
adequately: numbers involved in plausibility cilidershould suffer fogical overload to allow
conjunction / disjunction of effects to causes (@rtiveen causes) and numbers involved in relevance
criteria assess tt#egreecauses may belong to the diagnostic set.

The “logical overload” of numbers is a meaning ettd to a range of values, similar to fuzzy
truth values attached to elements in fuzzy subgessdinality of partition, over the universe of
discourse of a numerical variable may take the values: 2 — if processing referslassical logical
approach (truth values 0 and 1), 3 or more — it@ssing refers to Lukasiewicz or to Zadeh logic,
depending on horizontadi{cuts) or vertical (continuous) representationhef fuzzy subsets.

An example of logical overload of numbers is théofging: if the input of a fault-neuron
from a manifestation-neuron is greater than 0.5ulfticchreshold) then the link is declared as
“important” and enters the fault neuron (addedh® dther inputs), else it is “not important” hence
blocked (set to 0). Other examples below.

2.3. Connectionist modd of abduction by plausibility and relevance

In the presented approach, the ANN architectureatoductive problem solving is not a
particular one; the only restrictions that apple:athe two layersEFFECTS and CAUSESare
neighbour causes (because of possible conjuncbobrdfects to a fault — see §2.3.1). Plausibility
criteria are forward links betwe&FFECTSandCAUSESrelevance criteria form various grouping of
CAUSESthen provoke competitions inside the relevanceugroANN architecture as Adaline,
Perceptron or Counterpropagation, etc. are suit@aiplement the presented approach on abduction.

2.3.1 Neural models of plausibility

Let consider a caudsg as a neuron that observes general equation foomectivation by
forward excitatory link from the layer of effedgs(see Figure 1. a):

G =f(Z w; [, + 6) (1)

If both cause and effects get truth values,G;el[0,1] and effectd5[0,1], then a link with
weight w enforces the cause truth value at some effectsseCaeuron truth valug; indicates how
plausible is that cause in the context of actudots valueds;. However, the above equation should
also comply to plausibility criteria where effe@ater a conjunction first, then attack the neuron’s
input.

In the presented approach, an input of cause-neggbrilogical overload” to allow logical
processing (e.g. conjunction) required by plausjbdriteria. After the training phase the weighis
get certain values and the an actual input at caeseonC; in recall phase will be;; = w; LE;. If the
effect is not certaing<0.5) then input i$; < w; /2, hence:

if 1 >w; /2then |; = “importart” else § = “not important” (2)

It is now possible to perform logical aggregatiom effects and causes. Neural model of
plausibility is thesitethat performs the aggregation of input effectfollews (see Figure 1):

- disjunctive aggregatior performed by default through cumulative procegsif effectskE
at case-neuron inpit

li=2w;[E. (3)

- conjunctive aggregatior performed by thecbnjunction sitg see Figure 1. a, and the truth

table; outpuD of the site observes the rule:
if 1;>w;/2AND L>w,/2thenO =} +1, else O =0 (4)

- negation— performed by therfegation sitg see Figure 1. b, and the truth table; outpuif

the site observes the rule:
o= Wy - Il (5)
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The original architecture of ANN is changed by #ites added to cause-neurons that require
logical aggregation.

Conjunctive sitel{) AND

a)
0] 1< wy/2 1< wy/2
1< W, /2 0 0
o 1> W, /2 0 I+ 1
1 2 Truth table for inputsy, I,
W Wo

b) | O, Negation site-t) NOT

O I, < wWy/2 11> wy/2
- Wi-ly Wi-ly

Truth table for input

1
Wy

Figurel. Neural sites for logical aggregation of effeitt causes.

Note that added sites do not disturb or changetiggnal running of the initial ANN, while
they do not change either the training procedurevatuesw of weights. For example, if two effects
enter a conjunction aggregation, the input patferrtraining such situation presents the two inputs
with truth values greater than doubt value (0.3)ilevthat pattern comply the real situation (batphuit
effects are important); at recall phase it worthativate the fault only if both actual effects are
important.

2.3.2 Neural models for abduction problems

d)
Figure2. Abduction problem solving using neural
network models for plausibility criteria

Neural (sites) models for the five abduction pratsen the literature are depicted in Figure 2.
and solve each category from §2.1 as follows:

a) For independentabduction problems — excitatory links apply dingdiiom effectE; to
corresponding caugg (see Figure 2. a. If there exist also conjunctjoyuping of effects to the cause,
conjunction site(s) get “mounted” and enteringdléault disjunctive grouping to neuron input.

b) For monotonicabduction problems — caus€sandC; evoking both the same effeg,
suffer conjunction with one-another and with thenomon effect through conjunction sites as in Figure
2. b:
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(G~ GANDE)AND(C ~ G ANDE) (6)

c) For incompatibility abduction problems — the pa@; and C, of causes are mutually
exclusive, i.e. one is active if the other oneas both evoking the same effdgt The pair of causes
suffer conjunction with negation of the another @oejunction with the common effect as in Figure
2.d:

(G~ NOTGANDE) AND(C, -« NOTGANDE) (7)

d) Forcancellationabduction problems — the p&yandC, of causes are mutually exclusive,
l.e. one is active if the other one is not, botlokeng the same effed. The pair of causes suffer
conjunction with negation of the another one codjiom with the common effect as in Figure 2. e:

(G - NOTGANDE)AND(C, -« NOTGANDE) (8)

e) Foropenabduction problems — the only problem is dealinity @bsent effects: causgis
activated if no effeck; exists, see Figure 2. c:

C - NOTE 9

Original ANN architecture for abductive problem\dng is changed adding sites specific to
each abduction problem, adequate to causes arnadseifieconcern. However, similar to final note at
§2.3.1, the ANN running is not changed — regardhmg training procedure and values of weights
obtained.

2.3.3 Neural models of relevance

A relevance criterion usually observes minimal oatity of CAUSESover criterion’s
specific relevance group. In general, relevancelires three stage processing:

i) Consider all plausible causes belonging to releeamoup.

ii) Start competition between causes inside relevaraeg

iii) Select cause(s) for diagnostic set, observing amalr property of causes and some

selection threshold.

Neural model of relevance is competition betweemsea. Computationally, it may consist
from sorting all causes in the relevance groum sedecting the one(s) with higher degree according
to a maximum number (e.g. 1 if single fault diaggpsor a “relevance value” (e.g. minimum
activation of causes — if they exceed the doubtesd.5). For example, if the ordinal property for
sorting is plausibility of causes (truth valuesGAUSES, then the sorting procedure is applied to all
causes in the relevance group - not only to pld&shes, while those not plausible have the lowest
degree. So, competition proceed always over thieeesdt of CAUSESN the relevance group.

3 DEEP AND SHALLOW KNOWLEDGE IN DIAGNOSIS

Knowledge elicitation is a very important phaseliagnosis system design, while it involves
information on various causes and effects, on ghysitructure and on normal and faulty behavior of
the target system in real life. Any approach omgdasis depends on how knowledge covers spaces of
causes, effects and their relations; otherwise,gat® open spaces and incomplete knowledge leads to
inaccurate diagnosis. When the target systemdsraluctive flow systefCFS) diagnosis is more
difficult due to propagated effects throughout sistem.

Few works refer to methodical procedures to guidevkedge elicitation, and fewer to
generic models suited to control and guide knowdedgvering for diagnosis purposes. [3] proposes
knowledge pieces suited to cover faulty behaviad€BEs based on means-end modeling approach and
bond graphs, and [2] presents a CAKE (Computer d\ideowledge Elicitation) tool for methodical
covering of structural and behavioral complexityadarget CFS.

Present chapter stresses main directions to extesg knowledge on structure and behavior
of conductive flow systems which perform simultamgly multiple functions — further denominated
Multifunctional Conductive Flow Syster(ldCFSs), and the ways such knowledge is repredearid
become plausibility and relevance criteria for diagjs by abduction.

3.1 Abstraction levelsfor structure and behavior

It is commonly accepted that discrete pieces inspay and functional structure of a real
target system is only an abstraction that requiles models for continuous behavior; the entire @hod
obtained is aybrid dynamic modefas discussed in [7]). In this view, deep knowkedg the target
MCEFS refers to:

- physical and functional units, from means-end miodeperspective — as Discrete Event

System abstraction;
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- bond graph components and junctions, from bond hgradeling perspective — as
Continuous System abstraction required to assess@ll behavior of structural units.

For CFSs bond graphs represent powerful modelirgns)eas they not only capture essential
ideas from Kirchkoff’s laws but, additionally, eff a proper modularization of the target system’s
model, in a general conceptualization.

3.1.1 Physical and functional structure

From means-end point of view tineoduleis a network ottomponentsand the entire target
MCFSis a network of modules. Modules accomplish speeifidsduring specificactivities through
componentdlow functionsas in [8]. Each module may accomplish more endsyiged one end
attained during one activity; each components mayehmore functions but only one during one
activity of the superset module.

From bond graph point of view, modules correspantband graph junctions. [3] proposes
three generic flow functions that correspond tocbgraph primitive components, so reducing them to
a meaningful subset for diagnosis purposes:

- flow transport functionfff) — R component; when faulty, directly affects propagatié power

flow along paths in the target CFS;

- flow storing function fsf) —C andl components; when faulty, directly affect time gslan the

running process;

- flow processing functionfiff) — TRandGY components; when faulty, directly affect the ends

of modules.

3.1.2 Faulty behavior structure

Fault is a physical non-conformity occurred at compontavel, opposed to designed
specifications from producer. Fault's name ofteggasts a disorder or a physical damage so, it
reflects knowledge incompleteness about componardtare. The set of all “known” faults should be
decided at elicitation phase; some of them indiaagpecific damage, some — a class of damages.

Manifestationis a piece of knowledge assessing values of aaredd variable at component,
during a certain activity of the superset moduleniestation is a linguistic variable with truthlues
for normal o) or “too low” (l0), “too high” (hi) linguistic values. Some manifestations arrive by
sensors (from continuous or binary variables), sbyneuman operators tests (from human senses — as
adjectives, or from test points — as numbers) senled variables in the process. Manifestations may
refer to primary effects or to secondary effects.

Anomalyor symptom is a piece of knowledge obtained frosetiof manifestation by some
processing, and deposits deep knowledge in theidos@mhelpful in diagnosis (see below).

3.1.3  Generic anomalies in the faulty behavior

To each generic flow function a generic anomalgtiached :

i) Process anomalfAnoP) — means deviation from the normal valug. (400 high” or “too

low”) of an end-variable; it refers to transfornaais the flow undergoes.

i) Transport anomalf(AnoT) - means changes on flow variables or onrirstaucture of

component, relative to flow transport along flowhza

iif) Store anomalyAnoS) — refers to deviation from the normal valaethe delay specific to

storing (capacitor-like) or inertial (inductanc&e) component (see §2.3.).

Note that only transport anomalies refer to propedjeeffects, while process and store
anomalies are located at component showing cometsipg flow functionfpf or fsf as above. If there
exists a definite set of transport anomalies |Iatatefaulty component, then they get meanings of
primary effects.

[3] presents signatures with manifestations abrefind flow (bond graph) variables in 1-
junction and O-junction, specific to transport amtyroccurred in the junction.

3.1.4 Orthogonal transport anomalies
Works on fault diagnosis deal with concepts askéeg” or “obstruction”. [3] defines a set of
four orthogonal transport-anomalies for bond gremmponents, as follows:
a) Obstruction— change of resistance parameter (increase), wtiftmwv path modification,
e.g. clogged pipe.
b) Tunneling— change of resistance parameter (decrease), wifloou path modification,
e.g. broken-through pipe.
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¢) Leakage- structure change (balance too low on flow), imia flow path modification,
e.g. hole in pipe.

d) Infiltration — structure change (balance too high on flow), inwav flow path

modification, e.g. flow injection.

Transport anomalies are orthogonal in pairs (obstm to tunneling and leakage to
infiltration), each pair orthogonal to the otherfallt causes a unique transport anomaly that appea
at respective component and, by default, at motiulelongs. Thus, transport anomaly is a primary
effect located at module level, hence isolatingéans isolating the faulty module.

Each type of transport anomaly has a specific sigaa- regarding deviations for bond graph
junctions.

3.2 Guidelines on knowledge embedding in plausibility and relevance criteria

The main problem raised on diagnosis by abductiothé proposed approach is deep and
shallow knowledge elicitation and embedding inrtkeeral network for diagnosis.

During elicitation phase, knowledge engineer dmaorates:

- physical structure- i.e. modules and components;

- functional structure- i.e. activities for modules and flow functior@ tomponents, bond
graph junctions for interconnected modules and bgraph components with specific
parameters for corresponding flow functions;

- behavioral structure— i.e. faults, manifestations and flow anomalipso¢essing, store,
transport).

Note that components result from hierarchical dgmusition of physical structure according

to the accepted granularity of fault isolation ttisdocation units for faults may also have stonet

Plausibility criteria embed shallow knowledge astgras of non-propagated manifestations-
to-faults (e.g. color, position) and anomaliesdals. Deep knowledge refer to conjunction and
abduction problems related to manifestations anticefaults.

Relevance criteria involve modularization of faudiscording to deep knowledge on physical
and functional structure and on anomalies theygke\(in the given structural unit).

It worth stressing that shallow knowledge for plhilisy is obtained for each module
separately. So, practical survey rather experimemisreal complex systems seem realistic (in
technical and economical domains), while they arehmeasier performed and less combinatorial
burden occur than for the entire system.

3.3. Abduction procedurefor diagnosis

All discrete concepts resulted from elicitation ghashould enter in ANN structure for
diagnosis by abduction. So, all units from behali@tructure become neurons: manifestations on
input layer, faults on output layer and anomaliesan intermediate level (activated by manifestation
and attacking faults). All behavioral units attadhe a module belong to a separate neural network
(ANN). Links between neurons get weights by tragngmocedure (from shallow knowledge) and sites
from deep knowledge, all according to plausibitititeria stated by human diagnostician at elicoiati
phase.

All units from physical and functional structurescbme relevance groups related to relevance
criteria at elicitation phase.

For proper diagnosis, each component (as finaltitmean fault isolation) have attached the
“normal” CAUSE beside all faults at component in concern. Sdah#osetr,, Fi,... F,1 of neurons
indicating faults, it is added tHg, neuron — assessing the truth value of normal ngnni is important
to exist aF, neuron becausdORMALSsituation enters relevance competition WihULTY situation.
So, before finding the cause when faulty situatioourred, diagnosis system should asses if thettarg
system iFFAULTY (i.e. it performs fault detection).

To asse$AULTY situation a relevance criterion is applied ovédatisiondg=, to F,; and F,
as follows:

if OFi > 05 (=1.n-1) O nZlFi>n|:Fn thenFAULTY (10)

i=0

in words: if any of activated faults have truthued greater than the "doubt value" and the
relative level of theNORMALSsituation is greater than all current (activatidiits, then théAULTY
situation is credited.

Diagnosis is performed in hierarchic and sequemtahner, detecting transport anomaly at
module, then isolating fault(s) by abduction threugultiple plausibility and relevance criteria:
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1) faulty module isolatior by plausibility and relevance of transport anb@sapossibly
occurred based on signatures in junctions of teeegys bond graph model (see [2]);

2..n-1) fault isolation— proceed by sequential application of a gives sétplausibility and
relevance criteria, specific to module detectestage 1;

n) diagnostic— fault(s) obtained after assessing faulty sibratversus normal situation at
module, by relevance as in (10).

Because modules of target MCFS simultaneously aglisimends (independent from one
another), combinations of activities raise to aghngmber. In the hierarchic way proposed, diagnosis
relies only on shallow knowledge and deep knowleatgaodule level, then on groups of modules in
bond graph junctions.

4 CASE STUDY ON A HYDRAULIC INSTALLATION

Fault diagnosis was meant for a simple hydraubtaltation in a rolling mill plant (see Figure
3), comprising three modules: Supply Unit (pumpktand pressure valve), Hydraulic Brake (control
valve, brake cylinder) and Conveyor (control valself, the conveyor cylinder). For the 20 fault8to
components considered, manifestations come frososemdo, no, hi values (2 flow-rate, 4 pressure,
5 temperature), 8 binary values (cylinders atrigftt ends and open/shut valves) also 10 linguistic
manifestations from operator observed variablesrnéise and oil-mud). Software architecture exhibit
6 ANN perceptron blocks — 2 per module.

The three modules — corresponding to Hydraulic 8r&karrier and Oil Supply, are all bond
graph 1-jonctions (if considering components on lib@p for each) and they enter a O-junction,
corresponding to the entire hydraulic MCFS. Modueslve (somehow) independently those with
hydraulic cylinders in 4 activities and the thirttw2 activities.

Hydraulic Brake Carrier
1-Junction

Drossel

1-Junctior

AT

Ctrl. Valve Brake

[ » 0-Junctior ‘ Ctrl. Valve Carrier

Pressure Valve

1-Junctior
A [
Pump Tank

Figure3. Hydraulic installation under fault diagnosis.

Figure 4 presents the diagnostic for 20 simulatedts in the example hydraulic installation
and the maximum number of successive activitiewhich the diagnosis system is able to properly
indicate the fault; additional observations sugpliy human operator count as distinct activities.

Figure4. 20 faults and the number of

12 activities in which they are properly recognized.
10 Diagnosis performed on the target
81 _ _ hydraulic system applied plausibility criteria
6 from human diagnostician concerning patterns

1 3 5 7 9 11 13 15 17 19

41 of manifestations-to-faults from practice and
2 ﬂ-” U TI—H deep knowledge on specific transport anomalies
0 for the faults in concern. Deep knowledge for
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relevance criteria refer to physical structure emttansport anomalies shared by faults.

5 CONCLUSION

Diagnosis is a difficult task in real life, whileis often performed on open spaces of causes
and effects, in an incomplete and imprecise knogdednilieu. Human diagnostician performs
diagnosis by abduction; abductive reasoning iisedf challenge for philosophy, science and practice

The paper proposes a unified model for diagnosialiguction, based on plausibility and
relevance criteria on causes. It allows connedtomiplementation through various artificial neural
network types — if adequate to implement plaugiblhy excitatory links between effects and causes,
and relevance by competition in special groupsanises; all effects and causes become neurons with
graded levels of truth — regarding evidence ofat§f@nd certainty of cause, respectively.

The unified model for diagnosis by abduction is @en than the one proposed by [4], and
offers also natural meanings for human diagnosttcimterested on practical implementation in
technical or economical domains.

The unified for abductive problem solving modelfidly functional for all categories of
abduction problems, also for disjunctive and codijiwe grouping of effects to a cause. It is meant t
embed shallow and deep knowledge from human didigreosin the way he or she actually does in
practice and the connectionist model

The paper presents also hints on knowledge elmitatf deep and shallow knowledge on the
class of multifunctional conductive flow systems@MSs), i.e. systems that perform simultaneously
multiple functions, based on (multiple) flow contlon. Such systems are often met in industry but
also in other domains of real life. So, along wile diagnosis model by abduction the paper offers
design guidelines for computational model of anoma#ted diagnosis system. Application in
simulated environment shows good performance, afjribstic, however strongly dependent on
available knowledge.
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