EIRP Proceedings, Vol 13 (2018)
An Alternative to the Electre Method
Cătălin Angelo Ioan1, Gina Ioan2
Abstract: The paper proposes an alternative of the Electre method consisting in replacing the concordance and discordance coefficients with continuous utility functions.
Keywords: Electre; concordance; discordance
JEL Classification: E17; E27
1. Introduction
The ELECTRE method consists in the existence of a number of n alternatives for a decident: V1, V2,...,Vn. Let us also consider a number of m criteria C1, C2,...,Cm that have each a coefficient of importance (usually subjectively determined) k1, k2,...,km. For each pair (Vi,Cj) we set a numerical value vij (if it is a qualitative appreciation of the kind: weak, good, very good etc. we convert it to hierarchy numbers). The problem lies in determining the optimal action variant.
The algorithm consists in first establishing the nature of the method (maximizing or minimizing).
It is important to take into account, at this step, that all the criteria lead to the same nature of the problem. Thus, if the problem is, for example, maximization (minimization), and one or more criteria aim at minimizing (maximizing), the vij values corresponding to the criterion Cj - in question with the (-vij) values will be replaced.
We then normalize the importance coefficients by the relation: i= , i= and we therefore have: =1.
Then we shall determine the utilities Uij corresponding to the pairs (Vi,Cj) as follows:
for the maximization problem: Uij= ;
for the minimization problem: Uij= .
and build their table.
Utilities are particularly important from two points of view. On the one hand, it is noted that these are dimensionless (being obtained as ratios between sizes of the same nature) which will allow comparison of different sizes of different natures.
On the other hand, utilities provide an overview of the quantities of each criterion, namely, the closer they are to the problem requirement (maximization or minimization), the utility is closer to 1.
The larger the quantity of the problem, the utility is closer to zero.
It should also be noted that utilities are quantities always in the range: 0,1.
Concordance indicators are calculated as follows:
c(Vi,Vj)= =
Practically, the concordance indicator of variant Vi with Vj is determined by comparing the lines corresponding to Vi and Vj, and where the utility of a variation corresponding to a criterion is greater than or equal to the utility of the other variant for the same criterion, the normalized importance coefficient is added.
We always have: c(Vi,Vi)=1, i= and c(Vi,Vj)0,1, i,j= .
We also notice that the concordance indicator c(Vi,Vj) is closer to 1 if the greatest number of utilities of Vi are greater than or equal to the corresponding utilities of Vj (ie, the variant Vi are closer than Vj to the requirements of the problem) and vice versa for the values of concordance close to 0.
The discordance indicators are calculated as follows:
d(Vi,Vj)=
Practically, the discordance indicator of variant Vi with Vj is determined by comparing the lines corresponding to Vi and Vj, and where the utility of the variant Vj corresponding to a criterion is greater than or equal to the utility of the other Vi variant, for the same criterion, the difference is calculated. The highest value provided by them is determined. Always, we will have:
d(Vi,Vi)=0, i= and d(Vi,Vj)0,1, i,j= .
We also notice that the discordance indicator d(Vi,Vj) is closer to 0 if the largest number of utilities of Vi are greater than or equal to the corresponding utilities of Vj (ie, the variant Vi are closer than Vj to the requirements of the problem) and vice versa for the discordance values close to 1.
From the definitions of concordance and discordance indicators we can deduce their general formulas:
c(Vi,Vj)= , i,j=
d(Vi,Vj)= , i,j=
where the function sgn (signum - lat., sign) is well known:
Indeed, for the concordance indicator we have:
c(Vi,Vj)= = + + = + + = + = , i,j=
and for the discordance:
d(Vi,Vj)= =
= , i,j= .
We shall build a table and we shall pass the concordance indicators to the left, and the discordance to the right of each cell of a table that will have lines and columns of alternatives Vi.
Two p and q values (with complementary probability significance) are set so that p,q∈(0,1) and p+q=1 to measure the admitted concordance and discordance limits. So we will say that a variant Vi surpasses a variant Vj if:
Thus we have: pmin(c(Vi,Vj),1-d(Vi,Vj)).
Computing c(Vi,Vj) and (1-d(Vi,Vj)) we obtain:
pmin( c(Vi,Vj), 1- d(Vi,Vj)).
The chosen variant is the one for which the maximum of p is obtained.
2. An Alternative to the Indicators
The determintion of the concordance and discordance indicators has the great drawback that it requires comparisons on the components of the utilities of the two alternatives, leading eventually to discontinuous functions.
In the following, we will build a new concordance function that will be not only continuous but also differentiable and also, a function of discordance that will have a continuous character.
Let consider ow, the Heaviside unit's stepping-up function:
H(x)=
We have sgn(x)=2H(x)-1.
The function u(x)= approximates differentiable (better and better as k is higher) function H.
The function signum becomes:
sgn(x)=2u(x)-1=
Thus: sgn(x)= = =
Also sgn(a-b)= = and sgn(sgn(a-b)+1)= ,
sgn(sgn(a-b)-1)= .
From the formula: c(Vi,Vj)= , i,j= we have therefore:
c(Vi,Vj)=
and
d(Vi,Vj)= , i,j=
3. Example
Consider the Electre problem:
Table 1
Criterion nature |
min |
min |
min |
max |
Coefficients of importance |
4 |
2 |
4 |
5 |
Alternative/Criterion |
C1 |
C2 |
C3 |
C4 |
V1 |
1805 |
4 |
436 |
38 |
V2 |
1458 |
0 |
353 |
15 |
V3 |
1177 |
0 |
312 |
36 |
V4 |
1109 |
4 |
378 |
21 |
V5 |
1669 |
3 |
170 |
13 |
Classic solving with Electre method
Table 2
Table recalculation to maximize |
||||
Alternative/Criterion |
C1 |
C2 |
C3 |
C4 |
V1 |
-1805 |
-4 |
-436 |
38 |
V2 |
-1458 |
0 |
-353 |
15 |
V3 |
-1177 |
0 |
-312 |
36 |
V4 |
-1109 |
-4 |
-378 |
21 |
V5 |
-1669 |
-3 |
-170 |
13 |
min |
-1805 |
-4 |
-436 |
13 |
max |
-1109 |
0 |
-170 |
38 |
max-min |
696 |
4 |
266 |
25 |
Table 3
Utilities |
||||
Normalized coefficients |
0,27 |
0,13 |
0,27 |
0,33 |
Alternative/Criterion |
C1 |
C2 |
C3 |
C4 |
V1 |
0 |
0 |
0 |
1 |
V2 |
0,5 |
1 |
0,31 |
0,08 |
V3 |
0,9 |
1 |
0,47 |
0,92 |
V4 |
1 |
0 |
0,22 |
0,32 |
V5 |
0,2 |
0,25 |
1 |
0 |
Table 4
Table of concordance and discordance indicators |
|
|
|
|
|
|||||||||||
|
V1 (C) |
V1 (D) |
V2 (C) |
V2 (D) |
V3 (C) |
V3 (D) |
V4 (C) |
|
V4 (D) |
V5 (C) |
V5 (D) |
|||||
V1 |
1 |
0 |
0,33 |
1 |
0,33 |
1 |
0,46 |
|
1 |
0,33 |
1 |
|||||
V2 |
0,67 |
0,92 |
1 |
0 |
0,13 |
0,84 |
0,4 |
|
0,5 |
0,73 |
0,69 |
|||||
V3 |
0,67 |
0,08 |
1 |
0 |
1 |
0 |
0,73 |
|
0,1 |
0,73 |
0,53 |
|||||
V4 |
0,67 |
0,68 |
0,6 |
1 |
0,27 |
1 |
1 |
|
0 |
0,6 |
0,78 |
|||||
V5 |
0,67 |
1 |
0,27 |
0,75 |
0,27 |
0,92 |
0,4 |
|
0,8 |
1 |
0 |
Finally:
|
min C |
1-max D |
min |
V1 |
0,33 |
0 |
0 |
V2 |
0,13 |
0,08 |
0,08 |
V3 |
0,67 |
0,47 |
0,47 |
V4 |
0,27 |
0 |
0 |
V5 |
0,27 |
0 |
0 |
The optimal alternative is V3 (for min=0,47).
The modified Electre method (for k=6)
Table 5
Utilities |
||||
Normalized coefficients |
0,27 |
0,13 |
0,27 |
0,33 |
Alternative/Criterion |
C1 |
C2 |
C3 |
C4 |
V1 |
1 |
1 |
1 |
162754,79 |
V2 |
403,43 |
162755 |
41,26 |
2,61 |
V3 |
49020,8 |
162755 |
281,46 |
62317,65 |
V4 |
162754,79 |
1 |
14,01 |
46,53 |
V5 |
11,02 |
20,09 |
162755 |
1 |
Table 6
Table with utilities - sgn(Uip-Ujp) |
||||
Alternative/Criterion |
V1 |
|||
|
C1 |
C2 |
C3 |
C4 |
V1 |
0 |
0 |
0 |
0 |
V2 |
1 |
1 |
0,95 |
-1 |
V3 |
1 |
1 |
0,99 |
-0,45 |
V4 |
1 |
0 |
0,87 |
-1 |
V5 |
0,83 |
0,91 |
1 |
-1 |
Alternative/Criterion |
V2 |
|||
|
C1 |
C2 |
C3 |
C4 |
V1 |
-1 |
-1 |
-0,95 |
1 |
V2 |
0 |
0 |
0 |
0 |
V3 |
0,98 |
0 |
0,74 |
1 |
V4 |
1 |
-1 |
-0,49 |
0,89 |
V5 |
-0,95 |
-1 |
1 |
-0,45 |
Alternative/Criterion |
V3 |
|||
|
C1 |
C2 |
C3 |
C4 |
V1 |
-1 |
-1 |
-0,99 |
0,45 |
V2 |
-0,98 |
0 |
-0,74 |
-1 |
V3 |
0 |
0 |
0 |
0 |
V4 |
0,54 |
-1 |
-0,91 |
-1 |
V5 |
-1 |
-1 |
1 |
-1 |
Alternative/Criterion |
V4 |
|||
|
C1 |
C2 |
C3 |
C4 |
V1 |
-1 |
0 |
-0,87 |
1 |
V2 |
-1 |
1 |
0,49 |
-0,89 |
V3 |
-0,54 |
1 |
0,91 |
1 |
V4 |
0 |
0 |
0 |
0 |
V5 |
-1 |
0,91 |
1 |
-0,96 |
Alternative/Criterion |
V5 |
|||
|
C1 |
C2 |
C3 |
C4 |
V1 |
-0,83 |
-0,91 |
-1 |
1 |
V2 |
0,95 |
1 |
-1 |
0,45 |
V3 |
1 |
1 |
-1 |
1 |
V4 |
1 |
-0,91 |
-1 |
0,96 |
V5 |
0 |
0 |
0 |
0 |
Table 7
Table of concordance and discordance indicators |
|
|
|
|
||||||||||
|
V1 (C) |
V1 (D) |
V2 (C) |
V2 (D) |
V3 (C) |
V3 (D) |
V4 (C) |
V4 (D) |
V5 (C) |
V5 (D) |
||||
V1 |
1 |
0 |
0,41 |
1 |
0,35 |
1 |
0,64 |
1 |
0,6 |
1 |
||||
V2 |
0,67 |
0,92 |
1 |
0 |
0,41 |
0,84 |
0,59 |
0,5 |
0,73 |
0,69 |
||||
V3 |
1 |
0,08 |
1 |
0 |
1 |
0 |
1 |
0,1 |
0,73 |
0,53 |
||||
V4 |
0,67 |
0,68 |
0,87 |
1 |
0,4 |
1 |
1 |
0 |
0,66 |
0,78 |
||||
V5 |
0,67 |
1 |
0,68 |
0,75 |
0,27 |
0,92 |
0,48 |
0,8 |
1 |
0 |
|
min C |
1-max D |
min |
V1 |
0,35 |
0 |
0 |
V2 |
0,41 |
0,08 |
0,08 |
V3 |
0,73 |
0,47 |
0,47 |
V4 |
0,4 |
0 |
0 |
V5 |
0,27 |
0 |
0 |
The optimal alternative is V3 (for min=0,47).
By testing the accuracy of the algorithm for 100,000 random problems for 5 alternatives and 4 criterions, we obtained the following percentages of overlap between the two methods:
Table 8
k |
% |
2 |
96,142 |
3 |
96,228 |
4 |
96,355 |
5 |
96,583 |
6 |
96,811 |
7 |
96,973 |
8 |
97,326 |
9 |
97,540 |
10 |
97,671 |
20 |
98,569 |
We appreciate (also because exponential increases greatly) from the above table that the recommended value of k is 6.
4. References
Ioan, Cătălin Angelo & Ioan, Gina (2010). Applied Mathematics in Micro and Macroeconomics. Galati, Romania: Sinteze Publishers.
Ioan, Cătălin Angelo & Ioan, Gina (2011). A method of choice of the importance coefficients in the Electre method. Journal of Accounting and Management, no. 2, vol. 1, pp. 5-11.
Ioan, Cătălin Angelo & Ioan, Gina (2011). An adjustment of the Electre method for the case of intervals. Journal of Accounting and Management, no. 2, vol. 1, pp. 53-61.
Ioan, Cătălin Angelo & Ioan, Gina (2012). Matconomics. Galati, Romania: Zigotto Publishers.
Ioan, Cătălin Angelo & Ioan Gina (2012). Methods of mathematical modeling in economics. Galati, Romania: Zigotto Publishers.
1. Associate Professor, PhD, Danubius University of Galati, Department of Economics, Address: 3 Galati Blvd., Galati 800654, Romania, Tel.: +40372361102, Corresponding author: catalin_angelo_ioan@univ-danubius.ro.
2 Senior Lecturer, PhD, Danubius University of Galati, Department of Economics, Address: 3 Galati Blvd., Galati 800654, Romania, Tel.: +40372361102, Corresponding author: ginaioan@univ-danubius.ro.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.