EIRP Proceedings, Vol 10 (2015)

Analysis and Trend Determination of the Evolution of Tourist Accommodation Establishments (Adjusted Data Based Seasonally) in the European Union (28) with Analytical Methods



Rodica Pripoaie1



Abstract: This work presents the comparative analysis and trend determination of the evolution tourist accommodation establishments in the European Union (28), adjusted data based seasonally, in the period May 2014 - December 2014 used the Analytical Methods. The principal causes of the evolution tourist accommodation establishments were: the general economic evolution of industries and GDP per capita, the relatively low revenue or low development of the infrastructure. Trend determination of the evolution tourist accommodation establishments in the European Union (28) with analytical methods requires least squares method. On the base the results of the absolute deviations between empirical and theoretical values for the linear, curvilinear and modified exponential regression, will choose the best trend equation for the smallest variation. The best trend model for evolution tourist accommodation establishments in EU (28) is modelled using linear regression equation.

Keywords: accommodation establishments; least squares method; trend



  1. Introduction

A Tourism Satellite Account (TSA) is an economic measure of the importance of tourism. This TSA integrates in a single format data about the supply and use of tourism-related goods and services, and it permits a comparison of tourism with other industries since the concepts and methods used are based on the System of National Accounts.

The tourist accommodation establishments - monthly data adjusted series is a collection of monthly, quarterly and annual series.”

On the base of the evolution of tourist accommodation establishments in the European Union (28) between May 2014 and December 2014, we will adjust the series by least squares method.

We will calculate the linear, curvilinear and exponential modified regression, with the method of least squares for determining the trend of evolution tourist accommodation establishments in the European Union (28).

Then, on the base of the coefficients of variation we will analyze the smallest variation   or for   and after we can choose the best trend.



  1. Statistical Data

According to the data provided by the www.eurostat.ec.europa.eu the evolution of tourist accommodation establishments in the European Union (28) between May 2014 and December 2014 with adjusted data based seasonally, synthesised in the following tables.

Table 1. Nights spent total (residents and non-residents) at tourist accommodation establishments - monthly data

Nights spent

European Union (28 countries)

GEO/TIME

Total

Residents

Non-residents

2014M05

222.632.381

121.991.458

100.640.923

2014M06

284.605.699

146.855.872

137.749.827

2014M07

409.160.653

217.666.521

191.494.132

2014M08

473.674.603

265.780.360

207.894.243

2014M09

268.705.197

134.186.545

134.518.652

2014M10

191.419.123

102.482.252

88.936.871

2014M11

124.510.713

74.125.038

50.385.675

2014M12

127.854.926

72.958.103

54.896.823

Sources: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tour_occ_nim&lang=en



    1. Analyse of Statistical Data - Graphical Evolution

Analyse of statistical data for the evolution the evolution of tourist accommodation establishments in the European Union (28) between May 2014 and December 2014 with adjusted data based seasonally use the graphics, centralised as well as:

Figure 1. Evolution of tourist accommodation establishments in European Union (28)

Sources: own calculations



    1. Determining the linear trend

Least squares method involves solving the following system of equations for a linear regression:

 

We will consider origin of the time variable the centre of the series such that  , because the terms of the series are consecutive numbers and the anterior system of equations becomes:

Table 2. Trend linear of evolution of tourist accommodation establishments in European Union (28)

Years

yi

ti

ti yi

ti 2

|yi - yt|

2014M05

222.632.381

- 4

-890.529.524

16

362810228,1

140177847,1

2014M06

284.605.699

-3

-853.817.097

9

337812774,1

53207075,08

2014M07

409.160.653

-2

-818.321.306

4

312815320

96345332,99

2014M08

473.674.603

-1

-473.674.603

1

287817865,9

185856737,1

2014M09

268.705.197

1

268.705.197

1

237822957,8

30882239,19

2014M10

191.419.123

2

382.838.246

4

212825503,7

21406380,74

2014M11

124.510.713

3

373.532.139

9

187828049,7

63317336,67

2014M12

127.854.926

4

511.419.704

16

162830595,6

34975669,61

 Total

2.102.563.295

0

-1.499.847.244

60

2102563295

626168618,5

Sources: own calculations

So, on the data in Table no. 2 the system of equations becomes:

    

We will obtain the linear regression equation:

It can be observed that the linear regression equation for the evolution of tourist accommodation establishments in European Union (28) is   in the Table no. 2.

    1. Determining the curvilinear regression equation

For a curvilinear regression, least squares method involves solving the following system of equations:

 (Pripoaie, 2008).

We will consider origin of the time variable the centre of the series such that  , because the terms of the series are consecutive numbers and the system of equations becomes:

 

Table 3.Trend curvilinear of evolution of tourist accommodation establishments in European Union

Years

yi

ti

ti yi

ti 2

ti 3

ti 4

yi ti 2

| yi - yt|

1

2

3

4

5

6

7

8

9

10

2014M05

222.632.381

- 4

-890.529.524

16

-64

256

3562118096

361517716,1

138885335,1

2014M06

284.605.699

-3

-853.817.097

9

-27

81

2561451291

246044415,8

38561283,23

2014M07

409.160.653

-2

-818.321.306

4

-8

16

1636642612

156421357,3

252739295,7

2014M08

473.674.603

-1

-473.674.603

1

-1

1

473674603

92648540,52

381026062,5

2014M09

268.705.197

1

268.705.197

1

1

1

268705197

42653632,38

226051564,6

2014M10

191.419.123

2

382.838.246

4

8

16

765676492

56431540,99

134987582

2014M11

124.510.713

3

373.532.139

9

27

81

1120596417

96059691,37

28451021,63

2014M12

127.854.926

4

511.419.704

16

64

256

2045678816

161538083,5

33683157,53

 Total

2.102.563.295

0

-1.499.847.244

60

0

708

12434543524

1213314978

1234385302


Sources: own calculations

So, on the data in the Table no. 4 the system of equations becomes:

We will obtain:



________________________________________________________

  




 

The curvilinear regression equation is:

It can be observed that the curvilinear regression equation  is determined in column 9 of Table no. 3.

    1. Determining the Regression Equation Type Modified Exponential  

For a type modified exponential regression of the type  , least squares method involves solving the following system of equations:

We will consider origin of the time variable the centre of the series such that  , because the terms of the series are consecutive numbers.

Table 4. Trend exponential of evolution of tourist accommodation establishments in European Union

Years

yi

ti

ti yi

ti 2

log yi

ti log yi

log yt = log a + ti log b

yt=a*bti

|yi - yt|

1

2

3

4

5

6

7

8

9

10

2014M05

222.632.381

- 4

-890.529.524

16

8,35

-33,39

10,34

21627185237

21404552856

2014M06

284.605.699

-3

-853.817.097

9

8,45

-25,36

9,85

6998419960

6713814261

2014M07

409.160.653

-2

-818.321.306

4

8,61

-17,22

9,36

2264644308

1855483655

2014M08

473.674.603

-1

-473.674.603

1

8,68

-8,68

8,87

732824533,1

259149930,1

2014M09

268.705.197

1

268.705.197

1

8,43

8,43

7,89

76736148,94

191969048,1

2014M10

191.419.123

2

382.838.246

4

8,28

16,56

7,40

24831331,05

166587791,9

2014M11

124.510.713

3

373.532.139

9

8,10

24,29

6,91

8035261,222

116475451,8

2014M12

127.854.926

4

511.419.704

16

8,11

32,43

6,42

2600159,563

125254766,4

 Total

2.102.563.295

0

-1.499.847.244

60

67,00

-2,95

67,00

31735276938,80

30833287760,25

Sources: own calculations

So, on the data in the Table no. 5 the system of equations becomes:

Results that the exponential trend equation is:

or  

Therefore, the modified exponential regression equation is calculated in column 9 of Table 4.

  1. Conclusions

Therefore, the best trend with the method of least squares for the evolution of tourist accommodation establishments in European Union (28) is what leads to minimum value for   or for .

The data obtained in previous calculations we can summarize in the following table, no. 5 thus:

Table 5

Years

Linear regression equation

Curvilinear regression equation

Modified exponential regression equation

yt  


|yi - yt|

|yi - yt|

yt=a*bti

|yi - yt|

2014M05

362810228,1

140177847,1

361517716,1

138885335,1

21627185237

21404552856

2014M06

337812774,1

53207075,08

246044415,8

38561283,23

6998419960

6713814261

2014M07

312815320

96345332,99

156421357,3

252739295,7

2264644308

1855483655

2014M08

287817865,9

185856737,1

92648540,52

381026062,5

732824533,1

259149930,1

2014M09

237822957,8

30882239,19

42653632,38

226051564,6

76736148,94

191969048,1

2014M10

212825503,7

21406380,74

56431540,99

134987582

24831331,05

166587791,9

2014M11

187828049,7

63317336,67

96059691,37

28451021,63

8035261,222

116475451,8

2014M12

162830595,6

34975669,61

161538083,5

33683157,53

2600159,563

125254766,4

 Total

2102563295

626.168.618,5

1213314978

1.234.385.302

31735276938,80

30.833.287.760,25

Based on the results synthesized in Table no. 5 the values for the linear equation regression are the lowest value and this is the best trend with the method of least squares for the evolution of tourist accommodation establishments in European Union (28) in the analyzed period.



References

Jaba, E. (2002). Statistica/Statistics. 3-rd edition. Bucharest: Ed. Economică.

Pripoaie R., Pripoaie S. (2012). Determination of fiscal pressure trend in Romania with analytical methods. EuroEconomica, Issue 3 (31), pp. 26-32.

Pripoaie S., Pripoaie R. (2011). Evolution of taxation in Romania between 2001 – 2010. Acta Universitatis Danubius Oeconomica, Vol. 7, No. 5, pp. 106-115.

Pripoaie, R. (2008). Statistica economică/ Economic Statistics. Bucharest: Ed. Didactică și Pedagogică.

http://ec.europa.eu/eurostat/data/database





1 Associate Professor, PhD, “Danubius” University of Galati, Romania, Address: 3 Galati Boulevard, 800654 Galati, Romania, Tel.: +40.372.361.102, fax: +40.372.361.290, Corresponding author: rodicapripoaie@yahoo.com.

Refbacks

  • There are currently no refbacks.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.